Majorizing sequences and error bounds for iterative methods

Given a sequence {xn}n=o in a Banach space, it is well known that if there is a sequence {tn}n=O such that llxn+ -xlx 6 tn+ tn and lim tn = t ?n (tn nd 1xn @ n1 t1 -o Representative applications to infinite series and to iterates of types xn = Gxn and Xn = H(xn, xn1) are given for i = 1. Error estimates with 0 < , < 2 are shown to be valid and optimal for Newton iterates under the hypotheses of the Kantorovich theorem. The unified convergence theory of Rheinboldt is used to derive error bounds with 0 < , < 1 for a class of Nbwton-type methods, and these bounds are shown to be optimal for a subclass of methods. Practical limitations of the error bounds are described.

[1]  James M. Ortega,et al.  Iterative solution of nonlinear equations in several variables , 2014, Computer science and applied mathematics.

[2]  L. B. Rall A Note on the Convergence of Newton’s Method , 1974 .

[3]  R. Tapia,et al.  Optimal Error Bounds for the Newton–Kantorovich Theorem , 1974 .

[4]  G. Miel,et al.  On a posteriori error estimates , 1977 .

[5]  L. B. Rall Quadratic equations in Banach spaces , 1961 .

[6]  L. Kantorovich,et al.  Functional analysis and applied mathematics , 1963 .

[7]  J. J. Moré,et al.  Quasi-Newton Methods, Motivation and Theory , 1974 .

[8]  J. Ortega The Newton-Kantorovich Theorem , 1968 .

[9]  J. Dennis Toward a Unified Convergence Theory for Newton-Like Methods , 1971 .

[10]  Jon G. Rokne,et al.  Newton's method under mild differentiability conditions with error analysis , 1971 .

[11]  George Miel,et al.  The Kantorovich Theorem with Optimal Error Bounds , 1979 .

[12]  G. Miel Cones and error bounds for linear iterations , 1979 .

[13]  H. Hancock,et al.  Elliptic Integrals , 1958 .

[14]  W. Rheinboldt A unified convergence theory for a class of iterative processes. , 1968 .

[15]  L. B. Rall,et al.  Computational Solution of Nonlinear Operator Equations , 1969 .

[16]  J. J. Moré,et al.  A Characterization of Superlinear Convergence and its Application to Quasi-Newton Methods , 1973 .

[17]  Peter Lancaster,et al.  Error analysis for the Newton-Raphson method , 1966 .

[18]  G. Miel Unified error analysis for Newton-type methods , 1979 .

[19]  A. H. Sherman On Newton-Iterative Methods for the Solution of Systems of Nonlinear Equations , 1978 .

[20]  Nikolaĭ Stepanovich Kurpelʹ Projection-Iterative Methods for Solution of Operator Equations , 1976 .

[21]  J. E. Dennis,et al.  A Brief Introduction to Quasi-Newton Methods , 1977 .