A comprehensive methodology for building hybrid models of physical systems

Abstract This paper describes a comprehensive and systematic framework for building mixed continuous/discrete, i.e., hybrid physical system models. Hybrid models are a natural representation for embedded systems (physical systems with digital controllers) and for complex physical systems whose behavior is simplified by introducing discrete transitions to replace fast, often nonlinear dynamics. In this paper we focus on two classes of abstraction mechanisms, viz., time scale and parameter abstractions, discuss their impact on building hybrid models, and then derive the transition semantics required to ensure that the derived models are consistent with physical system principles. The transition semantics are incorporated into a formal model representation language, which is used to derive a computational architecture for hybrid systems based on hybrid automata. This architecture forms the basis for a variety of hybrid simulation, analysis, and verification algorithms. A complex example of a colliding rod system demonstrates the application of our modeling framework. The divergence of time and behavior analysis principles are applied to ensure that physical principles are not violated in the definition of the discrete transition model. The overall goal is to use this framework as a basis for developing systematic compositional modeling and analysis schemes for hybrid modeling of physical systems. Preliminary attempts in this area are discussed, with thoughts on how to develop this into a more general methodology.

[1]  Pieter J. Mosterman,et al.  Modeling and Simulation Semantics for Hybrid Dynamic Physical Systems , 1998 .

[2]  Pieter C. Breedveld,et al.  Some Guidelines for Stiff Model Implementation with the Use of Discontinuities , 1999 .

[3]  J. Lygeros,et al.  Simulation as a tool for hybrid system design , 1994, Fifth Annual Conference on AI, and Planning in High Autonomy Systems.

[4]  P. J. Monsterman Hybrid dynamic systems: A hybrid bond graph modeling paradigm and its application in diagnosis , 1997 .

[5]  Benjamin J. Kaipers,et al.  Qualitative Simulation , 1989, Artif. Intell..

[6]  P. Varaiya,et al.  Viable control of hybrid systems , 1996, Proceedings of 35th IEEE Conference on Decision and Control.

[7]  Kenneth D. Forbus Qualitative Process Theory , 1984, Artificial Intelligence.

[8]  R. Brach,et al.  Mechanical Impact Dynamics: Rigid Body Collisions , 1991 .

[9]  Nils J. Nilsson,et al.  Artificial Intelligence , 1974, IFIP Congress.

[10]  Tadao Murata,et al.  Petri nets: Properties, analysis and applications , 1989, Proc. IEEE.

[11]  J. Taylor,et al.  Switching and finite automata theory, 2nd ed. , 1980, Proceedings of the IEEE.

[12]  Wolfgang Ruppel,et al.  Energie und Entropie : ein Einführung in die Thermodynamik : die Physik des Naturwissenschaftlers , 1976 .

[13]  Pieter J. Mosterman,et al.  Building Hybrid Observers for Complex Dynamic Systems Using Model Abstractions , 1999, HSCC.

[14]  Leo Joskowicz,et al.  Automated Model Selection Using Context-Dependent Behaviors , 1992, AAAI.

[15]  Radha Jagadeesan,et al.  Computing with Continuous Change , 1998, Sci. Comput. Program..

[16]  L. Barford,et al.  Signal interpretation for monitoring and diagnosis, a cooling system testbed , 1999, IMTC/99. Proceedings of the 16th IEEE Instrumentation and Measurement Technology Conference (Cat. No.99CH36309).

[17]  Thomas A. Henzinger,et al.  The Algorithmic Analysis of Hybrid Systems , 1995, Theor. Comput. Sci..

[18]  Bengt Lennartson,et al.  Hybrid systems in process control , 1996 .

[19]  M. Egerstedt,et al.  On the regularization of Zeno hybrid automata , 1999 .

[20]  Pieter J. Mosterman,et al.  Model Semantics and Simulation of Time Scale Abstractions in Collision Models , 1998 .

[21]  Pieter J. Mosterman State Space Projection onto Linear DAE Manifolds Using Conservation Principles , 1998 .

[22]  Pieter J. Mosterman,et al.  Simulation of Discontinuities in Physical System Models Based on Conservation Principles , 1998 .

[23]  Alon Y. Halevy,et al.  Automated Model Selection for Simulation Based on Relevance Reasoning , 1997, Artif. Intell..

[24]  Pieter J. Mosterman,et al.  A Formal Hybrid Modeling Scheme for Handling Discontinuities in Physical System Models , 1996, AAAI/IAAI, Vol. 2.

[25]  Benjamin Kuipers,et al.  Qualitative reasoning: Modeling and simulation with incomplete knowledge , 1994, Autom..

[26]  T. Kailath,et al.  A generalized state-space for singular systems , 1981 .

[27]  V. Borkar,et al.  A unified framework for hybrid control: model and optimal control theory , 1998, IEEE Trans. Autom. Control..

[28]  W. P. M. H. Heemels,et al.  Linear Complementarity Systems , 2000, SIAM J. Appl. Math..

[29]  Gautam Biswas,et al.  A Formal Modeling Scheme for Continuous Systems: Focus on Diagnosis , 1993, IJCAI.

[30]  P. J. Mosterman,et al.  Principles for Modeling, Verification, and Simulation of Hybrid Dynamics Systems , 1997 .

[31]  Brian Falkenhainer,et al.  Compositional Modeling: Finding the Right Model for the Job , 1991, Artif. Intell..

[32]  P. V. Remoortere Physical systems theory in terms of bond graphs : P.C. Breedveld: Vakgroep Besturingsystemen en Computertechniek, THT, Afdeling Electrotechniek, Postbus 217, 7500 AE Enschede, The Netherlands. 1984, 200 pages, ISBN 90-9000599-4 , 1984 .

[33]  Alan S. Perelson,et al.  System Dynamics: A Unified Approach , 1976, IEEE Transactions on Systems, Man, and Cybernetics.

[34]  Benjamin Kuipers,et al.  Qualitative simulation using time-scale abstraction , 1988, Artif. Intell. Eng..

[35]  John Guckenheimer,et al.  Planar Hybrid Systems , 1994, Hybrid Systems.

[36]  Pieter J. Mosterman,et al.  Formal Specifications for Hybrid Dynamical Systems , 1997, IJCAI.

[37]  Anil Nerode,et al.  Models for Hybrid Systems: Automata, Topologies, Controllability, Observability , 1992, Hybrid Systems.

[38]  Hilding Elmqvist,et al.  Modeling from Physical Principles , 1996 .

[39]  Per Lötstedt Coulomb Friction in Two-Dimensional Rigid Body Systems , 1981 .

[40]  Shuji Doshita,et al.  Reasoning about Discontinuous Change , 1987, AAAI.

[41]  中園 薫 A Qualitative Physics Based on Confluences , 1986 .

[42]  Pieter J. Mosterman,et al.  Towards Procedures for Systematically Deriving Hybrid Models of Complex Systems , 2000, HSCC.

[43]  J. M. Schumacher Declarative, equation-based modeling of hybrid systems , 1998 .

[44]  Friedrich Pfeiffer,et al.  Multibody Dynamics with Unilateral Contacts , 1996 .

[45]  Pieter J. Mosterman,et al.  Deriving Discontinuous State Changes for Reduced Order Systems and the Effect on Compositionality , 1999 .

[46]  Benjamin Kuipers,et al.  Qualitative Simulation , 1986, Artificial Intelligence.

[47]  P. Mosterman,et al.  A theory of discontinuities in physical system models , 1998 .

[48]  H. Göhr,et al.  G. Falk und W. Ruppel: Energie und Entropie, eine Einführung in die Thermodynamik. Springer-Verlag, Berlin, Heidelberg, New York 1976. XIV, 411 Seiten, 189 Abbildungen, Preis: DM 58,—. , 1977 .

[49]  Thomas A. Henzinger,et al.  Hybrid Automata: An Algorithmic Approach to the Specification and Verification of Hybrid Systems , 1992, Hybrid Systems.

[50]  Inderpal S. Bhandari,et al.  Formal Basis for Commonsense Abstraction of Dynamic Systems , 1988, AAAI.

[51]  D. Whiffen Thermodynamics , 1973, Nature.

[52]  W. Sweet,et al.  The glass cockpit [flight deck automation] , 1995 .

[53]  Pieter J. Mosterman,et al.  An Ontology for Transitions in Physical Dynamic Systems , 1998, AAAI/IAAI.

[54]  Pieter J. Mosterman,et al.  Hybrid Automata for Modeling Discrete Transitions in Complex Dynamic Systems , 1998 .

[55]  Pieter J. Mosterman,et al.  A hybrid modeling and verification paradigm for embedded control systems , 1998 .