canSAR: an integrated cancer public translational research and drug discovery resource

canSAR is a fully integrated cancer research and drug discovery resource developed to utilize the growing publicly available biological annotation, chemical screening, RNA interference screening, expression, amplification and 3D structural data. Scientists can, in a single place, rapidly identify biological annotation of a target, its structural characterization, expression levels and protein interaction data, as well as suitable cell lines for experiments, potential tool compounds and similarity to known drug targets. canSAR has, from the outset, been completely use-case driven which has dramatically influenced the design of the back-end and the functionality provided through the interfaces. The Web interface at http://cansar.icr.ac.uk provides flexible, multipoint entry into canSAR. This allows easy access to the multidisciplinary data within, including target and compound synopses, bioactivity views and expert tools for chemogenomic, expression and protein interaction network data.

[1]  Borisas Bursteinas,et al.  ROCK: a breast cancer functional genomics resource , 2010, Breast Cancer Research and Treatment.

[2]  María Martín,et al.  The Universal Protein Resource (UniProt) in 2010 , 2010 .

[3]  Xin Wen,et al.  BindingDB: a web-accessible database of experimentally determined protein–ligand binding affinities , 2006, Nucleic Acids Res..

[4]  H. Parkinson,et al.  Large scale comparison of global gene expression patterns in human and mouse , 2010, Genome Biology.

[5]  A. Hopkins,et al.  The druggable genome , 2002, Nature Reviews Drug Discovery.

[6]  Tsviya Olender,et al.  GeneCards Version 3: the human gene integrator , 2010, Database J. Biol. Databases Curation.

[7]  E. Birney,et al.  Pfam: the protein families database , 2013, Nucleic Acids Res..

[8]  John P. Overington,et al.  ChEMBL: a large-scale bioactivity database for drug discovery , 2011, Nucleic Acids Res..

[9]  Mingming Jia,et al.  COSMIC: mining complete cancer genomes in the Catalogue of Somatic Mutations in Cancer , 2010, Nucleic Acids Res..

[10]  T. N. Bhat,et al.  The Protein Data Bank , 2000, Nucleic Acids Res..

[11]  Lincoln Stein,et al.  Reactome pathway analysis to enrich biological discovery in proteomics data sets , 2011, Proteomics.

[12]  L. Holm,et al.  The Pfam protein families database , 2005, Nucleic Acids Res..

[13]  A. Valencia,et al.  A gene network for navigating the literature , 2004, Nature Genetics.

[14]  Julian Blagg,et al.  Structural Alerts for Toxicity , 2010, Medicinal Chemistry for Practitioners.

[15]  Patrice Koehl,et al.  The ASTRAL Compendium in 2004 , 2003, Nucleic Acids Res..

[16]  W. Kabsch,et al.  Dictionary of protein secondary structure: Pattern recognition of hydrogen‐bonded and geometrical features , 1983, Biopolymers.

[17]  Nigel P. Carter,et al.  Accurate and reliable high-throughput detection of copy number variation in the human genome. , 2006, Genome research.

[18]  Egon L. Willighagen,et al.  The Chemistry Development Kit (CDK): An Open-Source Java Library for Chemo-and Bioinformatics , 2003, J. Chem. Inf. Comput. Sci..

[19]  G. Bemis,et al.  The properties of known drugs. 1. Molecular frameworks. , 1996, Journal of medicinal chemistry.

[20]  S. Brunak,et al.  Improved prediction of signal peptides: SignalP 3.0. , 2004, Journal of molecular biology.

[21]  Tatiana A. Tatusova,et al.  NCBI Reference Sequences: current status, policy and new initiatives , 2008, Nucleic Acids Res..

[22]  Gary D Bader,et al.  PSICQUIC and PSISCORE: accessing and scoring molecular interactions , 2011, Nature Methods.

[23]  Donald J. Abraham,et al.  Burger's medicinal chemistry, drug discovery, and development , 2010 .

[24]  Ben S. Wittner,et al.  Systematic RNA interference reveals that oncogenic KRAS-driven cancers require TBK1 , 2009, Nature.

[25]  J M Thornton,et al.  LIGPLOT: a program to generate schematic diagrams of protein-ligand interactions. , 1995, Protein engineering.

[26]  Ji Luo,et al.  Cancer Proliferation Gene Discovery Through Functional Genomics , 2008, Science.

[27]  John P. Overington,et al.  How many drug targets are there? , 2006, Nature Reviews Drug Discovery.

[28]  Christian von Mering,et al.  STRING 8—a global view on proteins and their functional interactions in 630 organisms , 2008, Nucleic Acids Res..

[29]  Ibrahim Emam,et al.  ArrayExpress update—an archive of microarray and high-throughput sequencing-based functional genomics experiments , 2010, Nucleic Acids Res..

[30]  A. Krogh,et al.  Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. , 2001, Journal of molecular biology.

[31]  Stephen K Burley,et al.  A Novel Mode of Gleevec Binding Is Revealed by the Structure of Spleen Tyrosine Kinase* , 2004, Journal of Biological Chemistry.

[32]  Karsten Zengler,et al.  The challenges of integrating multi-omic data sets. , 2010, Nature chemical biology.

[33]  Tim J. P. Hubbard,et al.  Data growth and its impact on the SCOP database: new developments , 2007, Nucleic Acids Res..

[34]  Sameer Velankar,et al.  PDBe: Protein Data Bank in Europe , 2009, Nucleic Acids Res..

[35]  Corinna Blasse,et al.  CancerResource: a comprehensive database of cancer-relevant proteins and compound interactions supported by experimental knowledge , 2010, Nucleic Acids Res..

[36]  Aravind Subramanian,et al.  An RNA interference model of RPS19 deficiency in Diamond-Blackfan anemia recapitulates defective hematopoiesis and rescue by dexamethasone: identification of dexamethasone-responsive genes by microarray. , 2004, Blood.

[37]  D. Conrad,et al.  Global variation in copy number in the human genome , 2006, Nature.

[38]  D. Botstein,et al.  A gene expression database for the molecular pharmacology of cancer , 2000, Nature Genetics.

[39]  Peter Murray-Rust,et al.  Minimum information about a bioactive entity (MIABE) , 2011, Nature Reviews Drug Discovery.

[40]  Baris E. Suzek,et al.  The Universal Protein Resource (UniProt) in 2010 , 2009, Nucleic Acids Res..

[41]  Liam J. McGuffin,et al.  The PSIPRED protein structure prediction server , 2000, Bioinform..

[42]  R. Shoemaker The NCI60 human tumour cell line anticancer drug screen , 2006, Nature Reviews Cancer.

[43]  J. Thornton,et al.  Satisfying hydrogen bonding potential in proteins. , 1994, Journal of molecular biology.

[44]  Bernt Eric Uhlin,et al.  Runaway–Replication Plasmids as Tools to Produce Large Quantities of Proteins from Cloned Genes in Bacteria , 1992, Bio/Technology.