PTBP1 suppresses porcine epidemic diarrhea virus replication via inducing protein degradation and IFN production

[1]  Aibing Wang,et al.  A Comprehensive View on the Host Factors and Viral Proteins Associated With Porcine Epidemic Diarrhea Virus Infection , 2021, Frontiers in Microbiology.

[2]  Y. Liao,et al.  PABPC4 Broadly Inhibits Coronavirus Replication by Degrading Nucleocapsid Protein through Selective Autophagy , 2021, Microbiology spectrum.

[3]  Zhiping Hu,et al.  Hypoxic preconditioning rejuvenates mesenchymal stem cells and enhances neuroprotection following intracerebral hemorrhage via the miR-326-mediated autophagy , 2021, Stem cell research & therapy.

[4]  Wu Tong,et al.  EGR1 Suppresses Porcine Epidemic Diarrhea Virus Replication by Regulating IRAV To Degrade Viral Nucleocapsid Protein , 2021, Journal of virology.

[5]  Wu Tong,et al.  TRIM21 inhibits porcine epidemic diarrhea virus proliferation by proteasomal degradation of the nucleocapsid protein , 2021, Archives of Virology.

[6]  A. Iwasaki,et al.  Commensal Microbiota Modulation of Natural Resistance to Virus Infection , 2020, Cell.

[7]  Wu Tong,et al.  BST2 suppresses porcine epidemic diarrhea virus replication by targeting and degrading virus nucleocapsid protein with selective autophagy , 2019, Autophagy.

[8]  F. Holsboer,et al.  SKP2 attenuates autophagy through Beclin1-ubiquitination and its inhibition reduces MERS-Coronavirus infection , 2019, Nature Communications.

[9]  G. Woźniakowski,et al.  Current Status of Porcine Epidemic Diarrhoea (PED) in European Pigs , 2019, Journal of veterinary research.

[10]  D. Green,et al.  Autophagy-Independent Functions of the Autophagy Machinery , 2019, Cell.

[11]  Guihong Zhang,et al.  Porcine epidemic diarrhea virus in Asia: An alarming threat to the global pig industry. , 2019, Infection, genetics and evolution : journal of molecular epidemiology and evolutionary genetics in infectious diseases.

[12]  J. Cate,et al.  PTBP1 mRNA isoforms and regulation of their translation , 2018, bioRxiv.

[13]  Zhiwei Wu,et al.  Promyelocytic Leukemia Restricts Enterovirus 71 Replication by Inhibiting Autophagy , 2018, Front. Immunol..

[14]  Yan Fan,et al.  PTBP1 promotes the growth of breast cancer cells through the PTEN/Akt pathway and autophagy , 2018, Journal of cellular physiology.

[15]  S. Ghavami,et al.  Autophagy activation is required for influenza A virus-induced apoptosis and replication. , 2018, Biochimica et biophysica acta. Molecular cell research.

[16]  Manuel D. Díaz-Muñoz,et al.  The RNA binding protein PTBP1 is necessary for B cell selection in germinal centers , 2018, Nature Immunology.

[17]  J. Hiscott,et al.  Activation of Nrf2 Signaling Augments Vesicular Stomatitis Virus Oncolysis via Autophagy-Driven Suppression of Antiviral Immunity , 2017, Molecular therapy : the journal of the American Society of Gene Therapy.

[18]  Jianfei Chen,et al.  Nucleocapsid Interacts with NPM1 and Protects it from Proteolytic Cleavage, Enhancing Cell Survival, and is Involved in PEDV Growth , 2017, Scientific Reports.

[19]  Shen Yang,et al.  Suppression of Virulent Porcine Epidemic Diarrhea Virus Proliferation by the PI3K/Akt/GSK-3α/β Pathway , 2016, PloS one.

[20]  D. Yoo,et al.  Immune evasion of porcine enteric coronaviruses and viral modulation of antiviral innate signaling , 2016, Virus Research.

[21]  B. Fielding,et al.  The Coronavirus Nucleocapsid Is a Multifunctional Protein , 2014, Viruses.

[22]  S. Xiao,et al.  Porcine Epidemic Diarrhea Virus Nucleocapsid Protein Antagonizes Beta Interferon Production by Sequestering the Interaction between IRF3 and TBK1 , 2014, Journal of Virology.

[23]  Longyun Chen,et al.  Phosphoprotein of human parainfluenza virus type 3 blocks autophagosome-lysosome fusion to increase virus production. , 2014, Cell host & microbe.

[24]  L. Ivashkiv,et al.  Regulation of type I interferon responses , 2013, Nature Reviews Immunology.

[25]  P. Lievens,et al.  New Insights into Functional Roles of the Polypyrimidine Tract-Binding Protein , 2013, International journal of molecular sciences.

[26]  Yong Huang,et al.  Porcine epidemic diarrhea virus N protein prolongs S-phase cell cycle, induces endoplasmic reticulum stress, and up-regulates interleukin-8 expression , 2013, Veterinary Microbiology.

[27]  Xiaonan Dong,et al.  Autophagy and Viruses: Adversaries or Allies? , 2013, Journal of Innate Immunity.

[28]  Masaaki Komatsu,et al.  Autophagy: Renovation of Cells and Tissues , 2011, Cell.

[29]  Jiangxia Liu,et al.  Subversion of Cellular Autophagy Machinery by Hepatitis B Virus for Viral Envelopment , 2011, Journal of Virology.

[30]  S. Akira,et al.  Conventional Dendritic Cells Mount a Type I IFN Response against Candida spp. Requiring Novel Phagosomal TLR7-Mediated IFN-β Signaling , 2011, The Journal of Immunology.

[31]  Kay Hofmann,et al.  Selective autophagy: ubiquitin-mediated recognition and beyond , 2010, Nature Cell Biology.

[32]  Schraga Schwartz,et al.  Position-dependent alternative splicing activity revealed by global profiling of alternative splicing events regulated by PTB , 2010, Nature Structural &Molecular Biology.

[33]  F. Chisari,et al.  Viruses and the autophagy machinery , 2010, Cell cycle.

[34]  R. Sumpter,et al.  Autophagy protects against Sindbis virus infection of the central nervous system. , 2010, Cell host & microbe.

[35]  D. Ann,et al.  The early autophagic pathway is activated by hepatitis B virus and required for viral DNA replication , 2010, Proceedings of the National Academy of Sciences.

[36]  Gene W. Yeo,et al.  Genome-wide analysis of PTB-RNA interactions reveals a strategy used by the general splicing repressor to modulate exon inclusion or skipping. , 2009, Molecular cell.

[37]  S. Kudchodkar,et al.  Viruses and autophagy , 2009, Reviews in medical virology.

[38]  J. Lescar,et al.  Amino acid residues critical for RNA-binding in the N-terminal domain of the nucleocapsid protein are essential determinants for the infectivity of coronavirus in cultured cells , 2006, Nucleic acids research.

[39]  R. Medzhitov,et al.  Type I interferons in host defense. , 2006, Immunity.

[40]  Ralf Bartenschlager,et al.  Cardif is an adaptor protein in the RIG-I antiviral pathway and is targeted by hepatitis C virus , 2005, Nature.

[41]  Osamu Takeuchi,et al.  IPS-1, an adaptor triggering RIG-I- and Mda5-mediated type I interferon induction , 2005, Nature Immunology.

[42]  Zhijian J. Chen,et al.  Identification and Characterization of MAVS, a Mitochondrial Antiviral Signaling Protein that Activates NF-κB and IRF3 , 2005, Cell.

[43]  P. Rufo,et al.  Diarrhea , 2005, Encyclopedia of Infant and Early Childhood Development.

[44]  Y. Ip,et al.  Regulators of the Toll and Imd pathways in the Drosophila innate immune response. , 2005, Trends in immunology.

[45]  T. Maniatis,et al.  IKKε and TBK1 are essential components of the IRF3 signaling pathway , 2003, Nature Immunology.

[46]  T. Yen,et al.  Characterization of the Nuclear Export Signal of Polypyrimidine Tract-binding Protein* , 2002, The Journal of Biological Chemistry.

[47]  R. Kamath,et al.  Nucleocytoplasmic shuttling of polypyrimidine tract-binding protein is uncoupled from RNA export. , 2001, Molecular biology of the cell.

[48]  Zhijian J. Chen,et al.  Identification and characterization of MAVS, a mitochondrial antiviral signaling protein that activates NF-kappaB and IRF 3. , 2005, Cell.

[49]  T. Maniatis,et al.  IKKepsilon and TBK1 are essential components of the IRF3 signaling pathway. , 2003, Nature immunology.