Approximation Schemes for Infinite Linear Programs

This paper presents approximation schemes for an infinite linear program. In particular, it is shown that, under suitable assumptions, the program's optimum value can be approximated by the values of finite-dimensional linear programs, and that, in addition, every accumulation point of a sequence of optimal solutions for the approximating programs is an optimal solution for the original problem.

[1]  O. Hernández-Lerma,et al.  Linear Programming Approximations for Markov Control Processes in Metric Spaces , 1997 .

[2]  H. H. Schaefer Banach Lattices and Positive Operators , 1975 .

[3]  A. Vershik Some remarks on the infinite-dimensional problems of linear programming , 1970 .

[4]  To-Yat Cheung Recent Developments in the Numerical Solution of Partial Differential Equations by Linear Programming , 1978 .

[5]  A. Vershik,et al.  Some questions concerning the approximation of the optimal value of infinite-dimensional problems in linear programming , 1968 .

[6]  J. E. Rubio The Global Control of Nonlinear Diffusion Equations , 1995 .

[7]  Soon-Yi Wu,et al.  Linear programming in measure spaces , 1994 .

[8]  W. Fleming Book Review: Discrete-time Markov control processes: Basic optimality criteria , 1997 .

[9]  Kurt Marti Duality in stochastic linear and dynamic programming , 1987 .

[10]  B. Craven,et al.  Generalizations of Farkas’ Theorem , 1977 .

[11]  O. Hernández-Lerma,et al.  Cone-Constrained Linear Equations in Banach Spaces , 2022 .

[12]  Gautam Appa,et al.  Linear Programming in Infinite-Dimensional Spaces , 1989 .

[13]  P. Rabinowitz Applications of Linear Programming to Numerical Analysis , 1968 .

[14]  Onésimo Hernández-Lerma,et al.  Average Optimality in Markov Control Processes via Discounted-CostProblems and Linear Programming , 1996 .

[15]  Valerie Girardin,et al.  Extreme Measures with Given Moments or Marginals , 1995, Canadian Journal of Mathematics.

[16]  Kenneth O. Kortanek,et al.  Semi-Infinite Programming: Theory, Methods, and Applications , 1993, SIAM Rev..

[17]  J. Rubio Control and Optimization: The Linear Treatment of Nonlinear Problems , 1986 .

[18]  O. Hernández-Lerma,et al.  Discrete-time Markov control processes , 1999 .

[19]  Marco A. López,et al.  Optimality theory for semi-infinite linear programming ∗ , 1995 .

[20]  O. Hernández-Lerma,et al.  Envelopes of Sets of Measures, Tightness, and Markov Control Processes , 1999 .