ESTIMATORS BASED ON KENDALL'S TAU IN MULTIVARIATE COPULA MODELS

The estimation of a real‐valued dependence parameter in a multivariate copula model is considered. Rank‐based procedures are often used in this context to guard against possible misspecification of the marginal distributions. A standard approach consists of maximizing the pseudo‐likelihood. Here, we investigate alternative estimators based on the inversion of two multivariate extensions of Kendall's tau developed by Kendall and Babington Smith, and by Joe. The former, which amounts to the average value of tau over all pairs of variables, is often referred to as the coefficient of agreement. Existing results concerning the finite‐ and large‐sample properties of this coefficient are summarized, and new, parallel findings are provided for the multivariate version of tau due to Joe, along with illustrations. The performance of the estimators resulting from the inversion of these two versions of Kendall's tau is compared in the context of copula models through simulations.

[1]  M. Kendall,et al.  The significance of rank correlations where parental correlation exists. , 1947, Biometrika.

[2]  Wassily Höffding,et al.  On the Distribution of the Rank Correlation Coefficient τ When the Variates are not Independent , 1947 .

[3]  P. Moran On the method of paired comparisons. , 1947, Biometrika.

[4]  M. Kendall Rank Correlation Methods , 1949 .

[5]  W. Hoeffding A Class of Statistics with Asymptotically Normal Distribution , 1948 .

[6]  Andrew Ehrenberg,et al.  ON SAMPLING FROM A POPULATION OF RANKERS , 1952 .

[7]  MOMENTS OF THE RANK CORRELATION COEFFICIENT τ IN THE GENERAL CASE , 1953 .

[8]  M. Sklar Fonctions de repartition a n dimensions et leurs marges , 1959 .

[9]  William L. Hays A Note on Average Tau as a Measure of Concordance , 1960 .

[10]  W. R. Schucany,et al.  Correlation structure in Farlie-Gumbel-Morgenstern distributions , 1978 .

[11]  D. Oakes A Model for Association in Bivariate Survival Data , 1982 .

[12]  Harry Joe,et al.  Multivariate concordance , 1990 .

[13]  C. Genest,et al.  A semiparametric estimation procedure of dependence parameters in multivariate families of distributions , 1995 .

[14]  T. Louis,et al.  Inferences on the association parameter in copula models for bivariate survival data. , 1995, Biometrics.

[15]  Robert T. Clemen,et al.  Copula Models for Aggregating Expert Opinions , 1996, Oper. Res..

[16]  Roger B. Nelsen,et al.  Nonparametric measures of multivariate association , 1996 .

[17]  Ene-Margit Tiit,et al.  Mixtures of multivariate quasi-extremal distributions having given marginals , 1996 .

[18]  Bruno Rémillard,et al.  On Kendall's Process , 1996 .

[19]  Emiliano A. Valdez,et al.  Understanding Relationships Using Copulas , 1998 .

[20]  F. Lindskog,et al.  Multivariate extremes, aggregation and dependence in elliptical distributions , 2002, Advances in Applied Probability.

[21]  S. Kotz,et al.  The Meta-elliptical Distributions with Given Marginals , 2002 .

[22]  Jean-David Fermanian,et al.  Financial Valuation and Risk Management Working Paper No . 157 Some Statistical Pitfalls in Copula Modeling for Financial Applications , 2004 .

[23]  E. Luciano,et al.  Copula Methods in Finance: Cherubini/Copula , 2004 .

[24]  E. Luciano,et al.  Copula methods in finance , 2004 .

[25]  N. L. Johnson,et al.  Continuous Multivariate Distributions: Models and Applications , 2005 .

[26]  Samuel Kotz,et al.  Corrigendum to The meta-elliptical distributions with given marginals , 2005 .

[27]  Bruno Rémillard,et al.  Dependence Properties of Meta-Elliptical Distributions , 2005 .

[28]  Christine M. Anderson-Cook,et al.  Book review: quantitative risk management: concepts, techniques and tools, revised edition, by A.F. McNeil, R. Frey and P. Embrechts. Princeton University Press, 2015, ISBN 978-0-691-16627-8, xix + 700 pp. , 2017, Extremes.

[29]  Gunky Kim,et al.  Comparison of semiparametric and parametric methods for estimating copulas , 2007, Comput. Stat. Data Anal..

[30]  Carlo De Michele,et al.  Extremes in Nature : an approach using Copulas , 2007 .

[31]  Alexander J. McNeil,et al.  Multivariate Archimedean copulas, $d$-monotone functions and $\ell_1$-norm symmetric distributions , 2009, 0908.3750.

[32]  Claudia Klüppelberg,et al.  Copula structure analysis , 2009 .

[33]  Pierre Duchesne,et al.  Statistical Modeling and Analysis for Complex Data Problems , 2010 .

[34]  Alexander J. McNeil,et al.  From Archimedean to Liouville copulas , 2010, J. Multivar. Anal..

[35]  Jun Yan,et al.  Comparison of three semiparametric methods for estimating dependence parameters in copula models , 2010 .

[36]  Z. Govindarajulu,et al.  Rank Correlation Methods (5th ed.) , 2012 .