m-Fold Hypergeometric Solutions of Linear Recurrence Equations Revisited
暂无分享,去创建一个
[1] Mark van Hoeij,et al. Rational solutions of linear difference equations , 1998, ISSAC '98.
[2] Manuel Bronstein,et al. On polynomial solutions of linear operator equations , 1995, ISSAC '95.
[3] Wolfram Koepf,et al. Algorithms for q-Hypergeometric Summation in Computer Algebra , 1999, J. Symb. Comput..
[4] Peter A. Hendriks,et al. Solving Difference Equations in Finite Terms , 1999, J. Symb. Comput..
[5] Mark van Hoeij,et al. Finite singularities and hypergeometric solutions of linear recurrence equations , 1999 .
[6] A. Duval. Lemmes de Hensel et factorisation formelle pour les opérateurs aux différences , 1983 .
[7] Peter Horn,et al. Faktorisierung in Schief-Polynomringen , 2009 .
[8] Sergei A. Abramov. Rational solutions of linear difference and q-difference equations with polynomial coefficients , 1995, ISSAC '95.
[9] Marko Petkovsek,et al. Hypergeometric Solutions of Linear Recurrences with Polynomial Coefficents , 1992, J. Symb. Comput..
[10] Wolfram Koepf,et al. Algorithmic determination of q-power series for q-holonomic functions , 2012, J. Symb. Comput..
[11] Philippe Robba. Lemme de Hensel pour les opérateurs différentiels , 1974 .
[12] Sergei A. Abramov,et al. q-Hypergeometric solutions of q-difference equations , 1998, Discret. Math..
[13] Mark van Hoeij,et al. Computing Hypergeometric Solutions of Linear Recurrence Equations , 2006, Applicable Algebra in Engineering, Communication and Computing.
[14] Bruno Salvy,et al. Finding all hypergeometric solutions of linear differential equations , 1993, ISSAC '93.