A comparison of model-based and regression classification techniques applied to near infrared spectroscopic data in food authentication studies

[1]  G. Brier VERIFICATION OF FORECASTS EXPRESSED IN TERMS OF PROBABILITY , 1950 .

[2]  A. Savitzky,et al.  Smoothing and Differentiation of Data by Simplified Least Squares Procedures. , 1964 .

[3]  J. Neyman,et al.  Research Papers in Statistics. Festschrift for J. Neyman F.N. David editor, assisted by E. Fix. London, New York, Sydney, J. Wiley & Sons, 1966, VIII p. 468 p., 105/–. , 1968, Recherches économiques de Louvain.

[4]  D. Rubin,et al.  Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .

[5]  A. Raftery,et al.  Model-based Gaussian and non-Gaussian clustering , 1993 .

[6]  I. Johnstone,et al.  Ideal spatial adaptation by wavelet shrinkage , 1994 .

[7]  Gérard Govaert,et al.  Gaussian parsimonious clustering models , 1995, Pattern Recognit..

[8]  G. Celeux,et al.  Regularized Gaussian Discriminant Analysis through Eigenvalue Decomposition , 1996 .

[9]  Adrian E. Raftery,et al.  How Many Clusters? Which Clustering Method? Answers Via Model-Based Cluster Analysis , 1998, Comput. J..

[10]  Adrian E. Raftery,et al.  MCLUST: Software for Model-Based Cluster Analysis , 1999 .

[11]  Hilko van der Voet,et al.  Pseudo-degrees of freedom for complex predictive models: the example of partial least squares , 1999 .

[12]  Sujit K. Ghosh,et al.  Essential Wavelets for Statistical Applications and Data Analysis , 2001, Technometrics.

[13]  I. Helland Some theoretical aspects of partial least squares regression , 2001 .

[14]  Adrian E. Raftery,et al.  Model-Based Clustering, Discriminant Analysis, and Density Estimation , 2002 .

[15]  Gerard Downey,et al.  Detection of Honey Adulteration by Addition of Fructose and Glucose Using near Infrared Transflectance Spectroscopy , 2003 .

[16]  Eric R. Ziegel,et al.  The Elements of Statistical Learning , 2003, Technometrics.

[17]  M. Barker,et al.  Partial least squares for discrimination , 2003 .

[18]  N. Dean,et al.  Using unlabelled data to update classification rules with applications in food authenticity studies , 2006 .