Topic modeling for large-scale text data
暂无分享,去创建一个
[1] Nando de Freitas,et al. An Introduction to MCMC for Machine Learning , 2004, Machine Learning.
[2] Thomas Hofmann,et al. A Collapsed Variational Bayesian Inference Algorithm for Latent Dirichlet Allocation , 2007 .
[3] Francis R. Bach,et al. Online Learning for Latent Dirichlet Allocation , 2010, NIPS.
[4] David B. Dunson,et al. Probabilistic topic models , 2011, KDD '11 Tutorials.
[5] Zhiyuan Liu,et al. PLDA+: Parallel latent dirichlet allocation with data placement and pipeline processing , 2011, TIST.
[6] Thomas L. Griffiths,et al. Online Inference of Topics with Latent Dirichlet Allocation , 2009, AISTATS.
[7] Michael I. Jordan,et al. Latent Dirichlet Allocation , 2001, J. Mach. Learn. Res..
[8] Feng Yan,et al. Parallel Inference for Latent Dirichlet Allocation on Graphics Processing Units , 2009, NIPS.
[9] Edward Y. Chang,et al. PLDA: Parallel Latent Dirichlet Allocation for Large-Scale Applications , 2009, AAIM.
[10] Ching-Yung Lin,et al. Modeling and predicting personal information dissemination behavior , 2005, KDD '05.
[11] Shun-ichi Amari,et al. Natural Gradient Works Efficiently in Learning , 1998, Neural Computation.
[12] Vladislav B. Tadi'c. Convergence Rate of Stochastic Gradient Search in the Case of Multiple and Non-Isolated Minima , 2009, 0904.4229.
[13] Yi Zhang,et al. Online belief propagation algorithm for probabilistic latent semantic analysis , 2013, Frontiers of Computer Science.
[14] Chong Wang,et al. Stochastic variational inference , 2012, J. Mach. Learn. Res..
[15] Mark Steyvers,et al. Finding scientific topics , 2004, Proceedings of the National Academy of Sciences of the United States of America.
[16] Jihong Ouyang,et al. Momentum Online LDA for Large-scale Datasets , 2014, ECAI.
[17] Yee Whye Teh,et al. Stochastic Gradient Riemannian Langevin Dynamics on the Probability Simplex , 2013, NIPS.
[18] Alfred O. Hero,et al. A Convergent Incremental Gradient Method with a Constant Step Size , 2007, SIAM J. Optim..
[19] Max Welling,et al. Distributed Algorithms for Topic Models , 2009, J. Mach. Learn. Res..
[20] Xi Chen,et al. Variance Reduction for Stochastic Gradient Optimization , 2013, NIPS.
[21] Tom Schaul,et al. No more pesky learning rates , 2012, ICML.
[22] Chong Wang,et al. An Adaptive Learning Rate for Stochastic Variational Inference , 2013, ICML.