Inference for an exponentiated half logistic distribution with application to cancer hybrid censored data

Abstract In this paper, based on hybrid censored sample from a two parameter exponentiated half logistic distribution, we consider the problem of estimating the unknown parameters using frequentist and Bayesian approaches. Expectation-Maximization, Lindley’s approximation and Metropolis-Hastings algorithms are used for obtaining point estimators and corresponding confidence intervals for the shape and scale parameters involved in the underlying model. Data analyses involving the survival times of patients suffering from cancer diseases and treated radiotherapy and/or chemotherapy have been performed. Finally, numerical simulation study was conducted to assess the performances of the so developed methods and conclusions on our findings are reported.

[1]  B. Efron Logistic Regression, Survival Analysis, and the Kaplan-Meier Curve , 1988 .

[2]  B. Epstein Truncated Life Tests in the Exponential Case , 1954 .

[3]  Sylvia Richardson,et al.  Markov Chain Monte Carlo in Practice , 1997 .

[4]  D. Lindley,et al.  Approximate Bayesian methods , 1980 .

[5]  A. Jamjoom Estimation of the Scale Parameter of the Half Logistic Distribution by Bloms Method , 2005 .

[6]  Morad Alizadeh,et al.  The Exponentiated Half-Logistic Family of Distributions: Properties and Applications , 2014 .

[7]  Suk-Bok Kang,et al.  Estimation in an Exponentiated Half Logistic Distribution under Progressively Type-II Censoring , 2011 .

[8]  Akbar Asgharzadeh,et al.  Point and interval estimation for the logistic distribution based on record data , 2016 .

[9]  Debasis Kundu,et al.  On hybrid censored Weibull distribution , 2007 .

[10]  Suk-Bok Kang,et al.  More efficient approaches to the exponentiated half-logistic distribution based on record values , 2016, SpringerPlus.

[11]  Bong-Jin Yum,et al.  Development of r,T hybrid sampling plans for exponential lifetime distributions , 1996 .

[12]  Chansoo Kim,et al.  Estimation of the scale parameter of the half-logistic distribution under progressively type II censored sample , 2010 .

[13]  Nader Ebrahimi Prediction intervals for future failures in the exponential distribution under hybrid censoring , 1992 .

[14]  S. Upadhyay,et al.  Bayesian Survival Analysis of Head and Neck Cancer Data Using Lognormal Model , 2014 .

[15]  Samuel Kotz,et al.  The Exponentiated Type Distributions , 2006 .

[16]  Ming-Hui Chen,et al.  Monte Carlo Estimation of Bayesian Credible and HPD Intervals , 1999 .

[17]  Donald B. Rubin,et al.  Max-imum Likelihood from Incomplete Data , 1972 .

[18]  Elisa Lee,et al.  Statistical Methods for Survival Data Analysis: Lee/Survival Data Analysis , 2003 .

[19]  T. Louis Finding the Observed Information Matrix When Using the EM Algorithm , 1982 .

[20]  Jerald F. Lawless,et al.  Statistical Models and Methods for Lifetime Data: Lawless/Statistical , 2002 .

[21]  M. May Bayesian Survival Analysis. , 2002 .

[22]  Wenhao Gui,et al.  Exponentiated half logistic distribution: Different estimation methods and joint confidence regions , 2017, Commun. Stat. Simul. Comput..

[23]  Irwin Guttman,et al.  Bayesian analysis of hybrid life tests with exponential failure times , 1987 .

[24]  Jerald F. Lawless,et al.  Statistical Models and Methods for Lifetime Data. , 1983 .

[25]  Nader Ebrahimi Estimating the parameters of an exponential distribution from a hybrid life test , 1986 .

[26]  Peter Green,et al.  Markov chain Monte Carlo in Practice , 1996 .

[27]  R. Dykstra,et al.  A Confidence Interval for an Exponential Parameter from a Hybrid Life Test , 1982 .

[28]  D. Rubin,et al.  Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .

[29]  Dipak K. Dey,et al.  Bayesian and frequentist estimation and prediction for exponential distributions , 2006 .

[30]  Suk-Bok Kang,et al.  Notes on the exponentiated half logistic distribution , 2015 .

[31]  N. Balakrishnan,et al.  Exact likelihood inference based on Type-I and Type-II hybrid censored samples from the exponential distribution , 2003 .

[32]  D. Kundu,et al.  EXPONENTIATED EXPONENTIAL FAMILY: AN ALTERNATIVE TO GAMMA AND WEIBULL DISTRIBUTIONS , 2001 .

[33]  L. Tierney Markov Chains for Exploring Posterior Distributions , 1994 .

[34]  Parameter and reliability estimation for an exponentiated half-logistic distribution under progressive type II censoring , 2014 .

[35]  G. K. Bhattacharyya,et al.  Exact confidence bounds for an exponential parameter under hybrid censoring , 1987 .

[36]  Rama Shanker,et al.  On modeling of lifetime data using two-parameter Gamma and Weibull distributions , 2016 .

[37]  Narayanaswamy Balakrishnan,et al.  Estimation of parameters from progressively censored data using EM algorithm , 2002 .

[38]  Debasis Kundu,et al.  Inference Based on Type-II Hybrid Censored Data From a Weibull Distribution , 2008, IEEE Transactions on Reliability.

[39]  Narayanaswamy Balakrishnan,et al.  Inference for the Scaled Half-Logistic Distribution Based on Progressively Type-II Censored Samples , 2005 .

[40]  Mohammad Z. Raqab,et al.  Prediction of future failures times based on Type-I hybrid censored samples of random sample sizes , 2019, Commun. Stat. Simul. Comput..

[41]  H. Martz Bayesian reliability analysis , 1982 .