Depth distribution and depth adaptation of microbiomes in juvenile and adult scleractinian corals (Pocillopora verrucosa) in the central South China Sea

[1]  F. Sinniger,et al.  Variability in thermal stress thresholds of corals across depths , 2023, Frontiers in Marine Science.

[2]  L. Hédouin,et al.  Thermal performance with depth: Comparison of a mesophotic scleractinian and an antipatharian species subjected to internal waves in Mo'orea, French Polynesia. , 2022, Marine environmental research.

[3]  T. Mass,et al.  Light and photoacclimatization drive distinct differences between shallow and mesophotic coral communities , 2022, Ecosphere.

[4]  D. Barshis,et al.  Fast and pervasive transcriptomic resilience and acclimation of extremely heat-tolerant coral holobionts from the northern Red Sea , 2021, Proceedings of the National Academy of Sciences.

[5]  Kefu Yu,et al.  Spatial distribution of benthic algae in the South China Sea: Responses to gradually changing environmental factors and ecological impacts on coral communities , 2021, Diversity and Distributions.

[6]  M. Sivaguru,et al.  Corals regulate the distribution and abundance of Symbiodiniaceae and biomolecules in response to changing water depth and sea surface temperature , 2021, Scientific Reports.

[7]  Bernhard Riegl,et al.  Insights from extreme coral reefs in a changing world , 2020, Coral Reefs.

[8]  Jiayuan Liang,et al.  Thermal acclimation increases heat tolerance of the scleractinian coral Acropora pruinosa. , 2020, The Science of the total environment.

[9]  C. Eakin,et al.  The 2014–2017 global-scale coral bleaching event: insights and impacts , 2019, Coral Reefs.

[10]  M. V. van Oppen,et al.  Coral microbiome dynamics, functions and design in a changing world , 2019, Nature Reviews Microbiology.

[11]  Jiayuan Liang,et al.  Latitudinal Variation in the Molecular Diversity and Community Composition of Symbiodiniaceae in Coral From the South China Sea , 2019, Front. Microbiol..

[12]  C. Kellogg Microbiomes of stony and soft deep-sea corals share rare core bacteria , 2019, Microbiome.

[13]  Y. Loya,et al.  Upper mesophotic depths in the coral reefs of Eilat, Red Sea, offer suitable refuge grounds for coral settlement , 2019, Scientific Reports.

[14]  P. Mumby,et al.  Editorial: The Future of Coral Reefs Subject to Rapid Climate Change: Lessons From Natural Extreme Environments , 2018, Front. Mar. Sci..

[15]  D. Allemand,et al.  Host-microbe interactions in octocoral holobionts - recent advances and perspectives , 2018, Microbiome.

[16]  F. Bonhomme,et al.  Thermal regime and host clade, rather than geography, drive Symbiodinium and bacterial assemblages in the scleractinian coral Pocillopora damicornis sensu lato , 2018, Microbiome.

[17]  C. Wild,et al.  Dominance of Endozoicomonas bacteria throughout coral bleaching and mortality suggests structural inflexibility of the Pocillopora verrucosa microbiome , 2018, Ecology and evolution.

[18]  J. Antón,et al.  Biogeographic Differences in the Microbiome and Pathobiome of the Coral Cladocora caespitosa in the Western Mediterranean Sea , 2018, Front. Microbiol..

[19]  R. Roche,et al.  Towards Developing a Mechanistic Understanding of Coral Reef Resilience to Thermal Stress Across Multiple Scales , 2018, Current Climate Change Reports.

[20]  T. Hughes,et al.  Large-scale bleaching of corals on the Great Barrier Reef. , 2017, Ecology.

[21]  D. Suggett,et al.  Symbiotic Dinoflagellate Functional Diversity Mediates Coral Survival under Ecological Crisis. , 2017, Trends in ecology & evolution.

[22]  K. S. Tkachenko,et al.  Dongsha Atoll: A potential thermal refuge for reef-building corals in the South China Sea. , 2017, Marine environmental research.

[23]  T. McClanahan Changes in coral sensitivity to thermal anomalies , 2017 .

[24]  Ryan J. Lowe,et al.  Global warming and recurrent mass bleaching of corals , 2017, Nature.

[25]  R. Peixoto,et al.  Beneficial Microorganisms for Corals (BMC): Proposed Mechanisms for Coral Health and Resilience , 2017, Front. Microbiol..

[26]  A. Cohen,et al.  Mass coral mortality under local amplification of 2 °C ocean warming , 2017, Scientific Reports.

[27]  S. Palumbi,et al.  Bacterial community dynamics are linked to patterns of coral heat tolerance , 2017, Nature Communications.

[28]  Chaolun Allen Chen,et al.  Symbiodinium spp. associated with scleractinian corals from Dongsha Atoll (Pratas), Taiwan, in the South China Sea , 2017, PeerJ.

[29]  B. Willis,et al.  Heritability of the Symbiodinium community in vertically- and horizontally-transmitting broadcast spawning corals , 2017, Scientific Reports.

[30]  P. Qian,et al.  Temperature shapes coral-algal symbiosis in the South China Sea , 2017, Scientific Reports.

[31]  P. Bongaerts,et al.  Microbiome variation in corals with distinct depth distribution ranges across a shallow–mesophotic gradient (15–85 m) , 2017, Coral Reefs.

[32]  J. Burt,et al.  Biogeography and molecular diversity of coral symbionts in the genus Symbiodinium around the Arabian Peninsula , 2017, Journal of biogeography.

[33]  D. Bourne,et al.  Differential specificity between closely related corals and abundant Endozoicomonas endosymbionts across global scales , 2016, The ISME Journal.

[34]  R. Gates,et al.  Corals' microbial sentinels , 2016, Science.

[35]  Hongyuan Wang,et al.  Effect of biochar additions to soil on nitrogen leaching, microbial biomass and bacterial community structure , 2016 .

[36]  Paul J. McMurdie,et al.  DADA2: High resolution sample inference from Illumina amplicon data , 2016, Nature Methods.

[37]  P. Harrison,et al.  Exploring the Symbiodinium rare biosphere provides evidence for symbiont switching in reef-building corals , 2016, The ISME Journal.

[38]  Y. Loya,et al.  Ancestral genetic diversity associated with the rapid spread of stress-tolerant coral symbionts in response to Holocene climate change , 2016, Proceedings of the National Academy of Sciences.

[39]  P. Frade,et al.  The microbiome of coral surface mucus has a key role in mediating holobiont health and survival upon disturbance , 2016, The ISME Journal.

[40]  Sen-Lin Tang,et al.  Genomic Insight into the Host–Endosymbiont Relationship of Endozoicomonas montiporae CL-33T with its Coral Host , 2016, Front. Microbiol..

[41]  T. Done,et al.  Limited scope for latitudinal extension of reef corals , 2015, Science.

[42]  Edward G. Smith,et al.  Local adaptation constrains the distribution potential of heat-tolerant Symbiodinium from the Persian/Arabian Gulf , 2015, The ISME Journal.

[43]  Ruth D Gates,et al.  The coral core microbiome identifies rare bacterial taxa as ubiquitous endosymbionts , 2015, The ISME Journal.

[44]  Chaolun Allen Chen,et al.  Symbiodinium spp. associated with high-latitude scleractinian corals from Jeju Island, South Korea , 2015, Coral Reefs.

[45]  J. Wiedenmann,et al.  Symbiodinium thermophilum sp. nov., a thermotolerant symbiotic alga prevalent in corals of the world's hottest sea, the Persian/Arabian Gulf , 2015, Scientific Reports.

[46]  P. Mumby,et al.  Widespread prevalence of cryptic Symbiodinium D in the key Caribbean reef builder, Orbicella annularis , 2015, Coral Reefs.

[47]  P. Bongaerts,et al.  Prevalent endosymbiont zonation shapes the depth distributions of scleractinian coral species , 2015, Royal Society Open Science.

[48]  R. Cunning,et al.  Change in algal symbiont communities after bleaching, not prior heat exposure, increases heat tolerance of reef corals , 2015, Global change biology.

[49]  Yuhang Jing,et al.  Community dynamics of prokaryotic and eukaryotic microbes in an estuary reservoir , 2014, Scientific Reports.

[50]  A. Barbrook,et al.  Assessing Symbiodinium diversity in scleractinian corals via next-generation sequencing-based genotyping of the ITS2 rDNA region , 2014, Molecular ecology.

[51]  P. Glynn,et al.  A depth refugium from catastrophic coral bleaching prevents regional extinction. , 2014, Ecology.

[52]  Hiroshi Mori,et al.  Design and Experimental Application of a Novel Non-Degenerate Universal Primer Set that Amplifies Prokaryotic 16S rRNA Genes with a Low Possibility to Amplify Eukaryotic rRNA Genes , 2013, DNA research : an international journal for rapid publication of reports on genes and genomes.

[53]  Nicholas S. Fabina,et al.  Symbiotic specificity, association patterns, and function determine community responses to global changes: defining critical research areas for coral‐Symbiodinium symbioses , 2013, Global change biology.

[54]  Jiajie Zhang,et al.  PEAR: a fast and accurate Illumina Paired-End reAd mergeR , 2013, Bioinform..

[55]  D. Bourne,et al.  Nutrient cycling in early coral life stages: Pocillopora damicornis larvae provide their algal symbiont (Symbiodinium) with nitrogen acquired from bacterial associates , 2013 .

[56]  N. Andreakis,et al.  Assessing genetic diversity in the scleractinian coral Stylophora pistillata (Esper 1797) from the Central Great Barrier Reef and the Coral Sea , 2013 .

[57]  X. Pochon,et al.  Endosymbiotic flexibility associates with environmental sensitivity in scleractinian corals , 2012, Proceedings of the Royal Society B: Biological Sciences.

[58]  Kefu Yu,et al.  Coral reefs in the South China Sea: Their response to and records on past environmental changes , 2012, Science China Earth Sciences.

[59]  Ruth D Gates,et al.  GeoSymbio: a hybrid, cloud‐based web application of global geospatial bioinformatics and ecoinformatics for Symbiodinium–host symbioses , 2012, Molecular ecology resources.

[60]  Maxim Teslenko,et al.  MrBayes 3.2: Efficient Bayesian Phylogenetic Inference and Model Choice Across a Large Model Space , 2012, Systematic biology.

[61]  Patrick D. Schloss,et al.  Reducing the Effects of PCR Amplification and Sequencing Artifacts on 16S rRNA-Based Studies , 2011, PloS one.

[62]  William A. Walters,et al.  QIIME allows analysis of high-throughput community sequencing data , 2010, Nature Methods.

[63]  P. Schloss A High-Throughput DNA Sequence Aligner for Microbial Ecology Studies , 2009, PloS one.

[64]  P. Bongaerts,et al.  Bleaching susceptibility and mortality of corals are determined by fine-scale differences in symbiont type , 2008, Proceedings of the National Academy of Sciences.

[65]  D. Bourne,et al.  Changes in coral-associated microbial communities during a bleaching event , 2008, The ISME Journal.

[66]  R. Steneck,et al.  Coral Reefs Under Rapid Climate Change and Ocean Acidification , 2007, Science.

[67]  Forest Rohwer,et al.  Metagenomic analysis of the microbial community associated with the coral Porites astreoides. , 2007, Environmental microbiology.

[68]  Tadashi Maruyama,et al.  Molecular identification of symbiotic dinoflagellates (Symbiodinium spp.) from Palythoa spp. (Anthozoa: Hexacorallia) in Japan , 2006, Coral Reefs.

[69]  T. Lajeunesse,et al.  The ecological distribution and comparative photobiology of symbiotic dinoflagellates from reef corals in Belize: Potential implications for coral bleaching , 2006 .

[70]  P. Thomé,et al.  Different algal symbionts explain the vertical distribution of dominant reef corals in the eastern Pacific , 2004, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[71]  R. Rowan Coral bleaching: Thermal adaptation in reef coral symbionts , 2004, Nature.

[72]  D. Bellwood,et al.  Confronting the coral reef crisis , 2004, Nature.

[73]  B. Willis,et al.  Flexibility in Algal Endosymbioses Shapes Growth in Reef Corals , 2004, Science.

[74]  O. Hoegh‐Guldberg,et al.  Low symbiont diversity in southern Great Barrier Reef corals, relative to those of the Caribbean , 2003 .

[75]  N. Knowlton,et al.  Diversity and distribution of coral-associated bacteria , 2002 .

[76]  B. Brown,et al.  Coral bleaching: causes and consequences , 1997, Coral Reefs.

[77]  V. Backman,et al.  Consensus thermotolerance ranking for 110 Symbiodinium phylotypes: an exemplar utilization of a novel iterative partial‐rank aggregation tool with broad application potential , 2017 .