Morphological identity of a taxonomically unassigned cytochrome c oxidase subunit I sequence from stomach contents of juvenile chum salmon determined using polymerase chain reaction

[1]  T. Maruyama,et al.  Expression of genes involved in the uptake of inorganic carbon in the gill of a deep-sea vesicomyid clam harboring intracellular thioautotrophic bacteria. , 2016, Gene.

[2]  Sudhir Kumar,et al.  MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. , 2016, Molecular biology and evolution.

[3]  Dáithí C. Murray,et al.  Comparison of morphological and DNA metabarcoding analyses of diets in exploited marine fishes , 2015 .

[4]  P. M. Arbizu,et al.  An application of in situ hybridization for the identification of commercially important fish species , 2015 .

[5]  Jiang‐Shiou Hwang,et al.  Dietary analysis on the shallow-water hydrothermal vent crab Xenograpsus testudinatus using Illumina sequencing , 2015 .

[6]  K. Katoh,et al.  MAFFT Multiple Sequence Alignment Software Version 7: Improvements in Performance and Usability , 2013, Molecular biology and evolution.

[7]  S. Lavery,et al.  PCR enrichment techniques to identify the diet of predators , 2012, Molecular ecology resources.

[8]  Akifumi S. Tanabe,et al.  Kakusan4 and Aminosan: two programs for comparing nonpartitioned, proportional and separate models for combined molecular phylogenetic analyses of multilocus sequence data , 2011, Molecular ecology resources.

[9]  A. Jeffs,et al.  Investigation on Natural Diets of Larval Marine Animals Using Peptide Nucleic Acid-Directed Polymerase Chain Reaction Clamping , 2011, Marine Biotechnology.

[10]  Toni Gabaldón,et al.  trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses , 2009, Bioinform..

[11]  N. Dubilier,et al.  Species identification of marine invertebrate early stages by whole-larvae in situ hybridisation of 18S ribosomal RNA , 2007 .

[12]  T. Ikeda,et al.  Seasonal occurrence and vertical distribution of appendicularians in Toyama Bay, southern Japan Sea , 2003 .

[13]  S. Yamaguchi,et al.  Molecular phylogeny of Ostracoda (Crustacea) inferred from 18S ribosomal DNA sequences: implication for its origin and diversification , 2003 .

[14]  F. Dini,et al.  In Situ Identification by Fluorescently Labeled Oligonucleotide Probes of Morphologically Similar, Closely Related Ciliate Species , 2003, Microbial Ecology.

[15]  T. Ikeda,et al.  Production of Oikopleura longicauda (Tunicata: Appendicularia) in Toyama Bay, southern Japan Sea , 1999 .

[16]  R. Vrijenhoek,et al.  DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. , 1994, Molecular marine biology and biotechnology.

[17]  P. R. Flood,et al.  Scanning electron microscope observations on the muscle innervation of Oikopleura dioica fol (appendicularia, tunicata) with notes on the arrangement of connective tissue fibres , 1975, Cell and Tissue Research.

[18]  W. N. Bailey An expression for , 1953 .

[19]  H. Kasai,et al.  Comparison of morphological and DNA-based techniques for stomach content analyses in juvenile chum salmon Oncorhynchus keta: a case study on diet richness of juvenile fishes , 2016, Fisheries Science.

[20]  H. Asami,et al.  Influence of Coastal Seawater Temperature on the Distribution and Growth of Juvenile Chum Salmon, with Recommendations for Altered Release Strategies , 2007 .

[21]  Y. Sako,et al.  Simple and rapid detection of the toxic marine dinoflagellates Alexandrium tamarense and A. catenella with fluorescence in situ hybridization (FISH) using rRNA-targeted probes , 2002 .

[22]  Q. Bone,et al.  Appendicularian distribution and zoogeography , 1998 .

[23]  千原 光雄,et al.  日本産海洋プランクトン検索図説 = An illustrated guide to marine plankton in Japan , 1997 .