Models of External- and Middle-Ear Function

The primary function of the external and middle ear is to gather sound energy and conduct it to the inner ear. How this goal is achieved depends almost entirely on the passive acoustical and mechanical properties of the ear’s most peripheral structures (Fletcher 1992; Rosowski 1994). (There are active components within the middle ear, i.e., the middle-ear muscles, but these structures principally work by modulating the passive properties of the middle ear [Moller 1983; Pang and Peake 1985, 1986].) Comprehension of the function of each of the ear’s peripheral components necessitates a physical description of the relevant acoustical and mechanical properties of the components as well as quantitative schemata for how the components interact. Such schemata serve two purposes: (1) they crystallize our understanding of how the structures work and provide testable hypotheses for further refinements, and (2) they supply approximations of external- and middle-ear function which can act as prefilters in studies of the inner ear and central auditory nervous system.

[1]  D. W. Batteau,et al.  The role of the pinna in human localization , 1967, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[2]  S. Khanna,et al.  Tympanic membrane vibrations in cats studied by time-averaged holography. , 1972, The Journal of the Acoustical Society of America.

[3]  K Gyo,et al.  Measurement of the ossicular vibration ratio in human temporal bones by use of a video measuring system. , 1987, Acta oto-laryngologica.

[4]  Shlomo Silman,et al.  The Acoustic reflex : basic principles and clinical applications , 1984 .

[5]  John D. Pettigrew,et al.  Frequency dependence of directional amplification at the cat's pinna , 1984, Hearing Research.

[6]  John T. McElveen,et al.  Effect of Mastoid Cavity Modification on Middle Ear Sound Transmission , 1982, The Annals of otology, rhinology, and laryngology.

[7]  J. Saunders,et al.  Measures of Middle Ear Admittance during Experimentally Induced Changes in Middle Ear Volume in the Hamster , 1981, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.

[8]  Jozef J. Zwislocki,et al.  Analysis of the Middle‐Ear Function. Part I: Input Impedance , 1962 .

[9]  John J. Rosowski Erratum: ‘‘The effects of external‐ and middle‐ear filtering on auditory threshold and noise‐induced hearing loss’’ [J. Acoust. Soc. Am. 90, 124–135 (1991)] , 1991 .

[10]  Willem F Decraemer,et al.  Heterodyne interferometer measurements of the frequency response of the manubrium tip in cat , 1990, Hearing Research.

[11]  L. U. E. Kohllöffel,et al.  Notes on the comparative mechanics of hearing. III. On Shrapnell's membrane , 1984, Hearing Research.

[12]  J. D. Harris Localization of Sound: Theory and Applications. , 1982 .

[13]  Mead C. Killion,et al.  Small acoustic tubes: New approximations including isothermal and viscous effects , 1988 .

[14]  L D Braida,et al.  Binaural pinna disparity: another auditory localization cue. , 1975, The Journal of the Acoustical Society of America.

[15]  W. Funnell On the undamped natural frequencies and mode shapes of a finite-element model of the cat eardrum. , 1983, The Journal of the Acoustical Society of America.

[16]  J T Kalb,et al.  Insights into hazard from intense impulses from a mathematical model of the ear. , 1991, The Journal of the Acoustical Society of America.

[17]  E. Shaw,et al.  The Human External and Middle Ear: Models and Concepts , 1983 .

[18]  Arthur H. Benade,et al.  On the Propagation of Sound Waves in a Cylindrical Conduit , 1968 .

[19]  E. Applebaum,et al.  Transplants and implants in otology ii, edited by n. yanagihara and j.i. suzuki, 413 pages, kugler publications, new york, 1992, $140.00 , 1993 .

[20]  W M Rabinowitz,et al.  Measurement of the acoustic input immittance of the human ear. , 1981, The Journal of the Acoustical Society of America.

[21]  E. Shaw Transformation of sound pressure level from the free field to the eardrum in the horizontal plane. , 1974, The Journal of the Acoustical Society of America.

[22]  R. Butler,et al.  Spectral cues utilized in the localization of sound in the median sagittal plane. , 1977, The Journal of the Acoustical Society of America.

[23]  R. R. Pfeiffer,et al.  On the sound pressure transformation by the head and auditory meatus of the cat. , 1966, Acta oto-laryngologica.

[24]  M. Lawrence,et al.  The Acoustic Pathways to the Cochlea , 1950 .

[25]  J. E. Hind,et al.  Direction-dependent spectral properties of cat external ear: new data and cross-species comparisons. , 1990, The Journal of the Acoustical Society of America.

[26]  Gerald A. Studebaker,et al.  Acoustical Factors Affecting Hearing Aid Performance , 1992 .

[27]  J Tonndorf,et al.  The Role of the Tympanic Membrane in Middle Ear Transmission , 1970, The Annals of otology, rhinology, and laryngology.

[28]  Fred B. Daniels Acoustical Impedance of Enclosures , 1947 .

[29]  F. McConnel,et al.  The Auditory Periphery , 1975 .

[30]  Thomas J. Lynch Signal processing by the cat middle ear: admittance and transmission, measurements and models , 1981 .

[31]  Eugene Galanter,et al.  Handbook of mathematical psychology: I. , 1963 .

[32]  L H Carney,et al.  The radiation impedance of the external ear of cat: measurements and applications. , 1988, The Journal of the Acoustical Society of America.

[33]  Jerald L. Bauck,et al.  Corrections to L. Schwarz, ‘‘On the theory of diffraction of a plane soundwave around a sphere’’ [‘‘Zur Theorie der Beugung einer ebenen Schallwelle an der Kugel,’’ Akust. Z. 8, 91–117 (1943)] , 1986 .

[34]  K B Hüttenbrink,et al.  The mechanics of the middle-ear at static air pressures: the role of the ossicular joints, the function of the middle-ear muscles and the behaviour of stapedial prostheses. , 1988, Acta oto-laryngologica. Supplementum.

[35]  S. L. Campbell,et al.  Pressure transfer function and absorption cross section from the diffuse field to the human infant ear canal. , 1994, The Journal of the Acoustical Society of America.

[36]  J J Rosowski,et al.  Sound-power collection by the auditory periphery of the Mongolian gerbil Meriones unguiculatus. I: Middle-ear input impedance. , 1992, The Journal of the Acoustical Society of America.

[37]  Roger B. Coles,et al.  Biophysical Aspects of Directional Hearing in the Tammar Wallaby, Macropus Eugenii , 1986 .

[38]  Jont B. Allen,et al.  Measurement of Eardrum Acoustic Impedance , 1986 .

[39]  G. F. Kuhn Model for the interaural time differences in the azimuthal plane , 1977 .

[40]  B. W. Lawton,et al.  Specification of the geometry of the human ear canal for the prediction of sound-pressure level distribution. , 1989, The Journal of the Acoustical Society of America.

[41]  Y. Onchi Mechanism of the Middle Ear , 1961 .

[42]  S. Khanna,et al.  Interferometric measurement of the amplitude and phase of tympanic membrane vibrations in cat , 1989, Hearing Research.

[43]  S. Khanna,et al.  Malleus vibration mode changes with frequency , 1991, Hearing Research.

[44]  Jont B. Allen,et al.  Peripheral Auditory Mechanisms , 1986 .

[45]  R. Rabbitt,et al.  Three-dimensional acoustic waves in the ear canal and their interaction with the tympanic membrane. , 1988, The Journal of the Acoustical Society of America.

[46]  A. Møller,et al.  AN EXPERIMENTAL STUDY OF THE ACOUSTIC IMPEDANCE OF THE MIDDLE EAR AND ITS TRANSMISSION PROPERTIES. , 1965, Acta oto-laryngologica.

[47]  S M Khanna,et al.  Specification of the acoustical input to the ear at high frequencies. , 1985, The Journal of the Acoustical Society of America.

[48]  Juergen Tonndorf,et al.  Physical and Physiological Principles Controlling Auditory Sensitivity in Primates , 1978 .

[49]  J. Allen,et al.  A parametric study of cochlear input impedance. , 1991, The Journal of the Acoustical Society of America.

[50]  John J. Rosowski,et al.  Acoustic input impedance of the stapes and cochlea in human temporal bones , 1996, Hearing Research.

[51]  M. Sanders Handbook of Sensory Physiology , 1975 .

[52]  L. Robles,et al.  Middle-ear response in the chinchilla and its relationship to mechanics at the base of the cochlea. , 1990, The Journal of the Acoustical Society of America.

[53]  John W. Matthews,et al.  Modeling Reverse Middle Ear Transmission of Acoustic Distortion Signals , 1983 .

[54]  W. T. Peake,et al.  Input impedance of the cochlea in cat. , 1982, The Journal of the Acoustical Society of America.

[55]  Ronald Hinchcliffe,et al.  Scientific foundations of otolaryngology , 1976 .

[56]  Horst L. Wullstein,et al.  LXXXVIII The Restoration of the Function of the Middle Ear, in Chronic Otitis Media , 1956 .

[57]  Jozef J. Zwislocki,et al.  Analysis of Some Auditory Characteristics. , 1963 .

[58]  J J Rosowski,et al.  Measurements of the acoustic input impedance of cat ears: 10 Hz to 20 kHz. , 1994, The Journal of the Acoustical Society of America.

[59]  Ignacy Malecki,et al.  Physical Foundations of Technical Acoustics , 1969 .

[60]  A. Popper,et al.  The Evolutionary biology of hearing , 1992 .

[61]  X. Pang,et al.  How Do Contractions of the Stapedius Muscle Alter the Acoustic Properties of the Ear , 1986 .

[62]  S. Khanna,et al.  Tympanic-membrane vibrations in human cadaver ears studied by time-averaged holography. , 1972, The Journal of the Acoustical Society of America.

[63]  Kimitoshi Fukudome,et al.  Influence of the shape and size of a dummyhead upon Thevenin acoustic impedance and Thevenin pressure. , 1989 .

[64]  W R Funnell,et al.  On the damped frequency response of a finite-element model of the cat eardrum. , 1987, The Journal of the Acoustical Society of America.

[65]  E. Shaw,et al.  External-ear acoustic models with simple geometry. , 1968, The Journal of the Acoustical Society of America.

[66]  G. Békésy,et al.  Experiments in Hearing , 1963 .

[67]  C A Laszlo,et al.  Modeling of the cat eardrum as a thin shell using the finite-element method. , 1978, The Journal of the Acoustical Society of America.

[68]  John J. Rosowski,et al.  The Effectiveness of External and Middle Ears in Coupling Acoustic Power into the Cochlea , 1986 .

[69]  George F. Kuhn The pressure transformation from a diffuse sound field to the external ear and to the body and head surface , 1979 .

[70]  E. Young,et al.  Pinna-based spectral cues for sound localization in cat , 1992, Hearing Research.

[71]  Francis M. Wiener The Diffraction of a Progressive Sound Wave by the Human Head , 1947 .

[72]  V. Nedzelnitsky,et al.  Sound pressures in the basal turn of the cat cochlea. , 1980, The Journal of the Acoustical Society of America.

[73]  W. S. Rhode,et al.  Some observations on cochlear mechanics. , 1978, The Journal of the Acoustical Society of America.

[74]  W. S. Rhode,et al.  Basilar membrane mechanics in the hook region of cat and guinea-pig cochleae: Sharp tuning and nonlinearity in the absence of baseline position shifts , 1992, Hearing Research.

[75]  Max A. Viergever,et al.  Mechanics of Hearing , 1983 .

[76]  Michael R. Stinson SPATIAL DISTRIBUTION OF SOUND PRESSU~E IN THE EAR CANAL , 1986 .

[77]  E. A. G. Shaw,et al.  Diffuse field response, receiver impedance, and the acoustical reciprocity principle , 1988 .

[78]  B M Johnstone,et al.  Middle-ear function in the guinea pig. , 1974, The Journal of the Acoustical Society of America.

[79]  F L Wightman,et al.  Headphone simulation of free-field listening. I: Stimulus synthesis. , 1989, The Journal of the Acoustical Society of America.

[80]  M. R. Stinson,et al.  The spatial distribution of sound pressure within scaled replicas of the human ear canal. , 1985, The Journal of the Acoustical Society of America.

[81]  C D Geisler,et al.  Estimation of eardrum acoustic pressure and of ear canal length from remote points in the canal. , 1990, The Journal of the Acoustical Society of America.

[82]  P Dallos,et al.  Low-frequency auditory characteristics: Species dependence. , 1970, The Journal of the Acoustical Society of America.

[83]  Kimitoshi Fukudome Equalization for the dummy-head-headphone system capable of reproducing true directional information , 1980 .

[84]  Francis M. Wiener,et al.  The Pressure Distribution in the Auditory Canal in a Progressive Sound Field , 1946 .

[85]  John J. Rosowski,et al.  Middle-ear transmission: Acoustic versus ossicular coupling in cat and human , 1992, Hearing Research.

[86]  N. Fletcher,et al.  Acoustic systems in biology , 1992 .

[87]  S. M. Khanna,et al.  Modelling the malleus vibration as a rigid body motion with one rotational and one translational degree of freedom , 1994, Hearing Research.

[88]  John J. Rosowski,et al.  Hearing in Transitional Mammals: Predictions from the Middle-Ear Anatomy and Hearing Capabilities of Extant Mammals , 1992 .

[89]  G. Zweig,et al.  Phenomenological characterization of eardrum transduction. , 1991, The Journal of the Acoustical Society of America.

[90]  William T. Peake,et al.  A model for changes in middle‐ear transmission caused by stapedius‐muscle contractions , 1985 .

[91]  L. Aitkin,et al.  Middle-ear function in a monotreme: the Echidna (Tachyglossus aculeatus). , 1972, The Journal of experimental zoology.

[92]  William M. Siebert,et al.  Hearing and the Ear , 1973 .

[93]  Lawrence E. Kinsler,et al.  Fundamentals of acoustics , 1950 .

[94]  John J. Rosowski,et al.  What did Morganucodon hear , 1991 .

[95]  B. B. Bauer,et al.  Fundamentals of acoustics , 1963 .

[96]  C. Shera,et al.  Analyzing reverse middle-ear transmission: noninvasive Gedankenexperiments. , 1992, The Journal of the Acoustical Society of America.

[97]  R D Rabbitt High-frequency plane waves in the ear canal: application of a simple asymptotic theory. , 1988, The Journal of the Acoustical Society of America.

[98]  H Wada,et al.  Analysis of dynamic behavior of human middle ear using a finite-element method. , 1992, The Journal of the Acoustical Society of America.

[99]  Martinus H. M. Esser The mechanism of the middle ear: Part II. The drum , 1947 .

[100]  David P. Egolf Mathematical modeling of a probe-tube microphone , 1977 .

[101]  D. M. Green,et al.  Directional sensitivity of sound-pressure levels in the human ear canal. , 1989, The Journal of the Acoustical Society of America.

[102]  Charles A. Desoer,et al.  Basic Circuit Theory , 1969 .

[103]  G Zweig,et al.  Middle-ear phenomenology: the view from the three windows. , 1992, The Journal of the Acoustical Society of America.

[104]  R. Rabbitt,et al.  A fibrous dynamic continuum model of the tympanic membrane. , 1986, The Journal of the Acoustical Society of America.

[105]  W. T. Peake,et al.  A model for signal transmission in an ear having hair cells with free-standing stereocilia. II. Macromechanical stage , 1985, Hearing Research.

[106]  W R Funnell,et al.  On the degree of rigidity of the manubrium in a finite-element model of the cat eardrum. , 1992, The Journal of the Acoustical Society of America.

[107]  H WULLSTEIN,et al.  The restoration of the function of the middle ear, in chronic otitis media. , 1956, The Annals of otology, rhinology, and laryngology.

[108]  William M. Rabinowitz,et al.  Acoustic-reflex effects on the input admittance and transfer characteristics of the human middle-ear , 1977 .

[109]  Stuart Ballantine.,et al.  Effect of Diffraction Around the Microphone in Sound Measurements , 1928 .

[110]  N. Fletcher,et al.  Physical models for the analysis of acoustical systems in biology. , 1979 .

[111]  O. W. Henson,et al.  Comparative Anatomy of the Middle Ear , 1974 .

[112]  Arthur H. Benade,et al.  Equivalent circuits for conical waveguides , 1988 .

[113]  W. T. Peake,et al.  Middle-ear characteristics of anesthetized cats. , 1967, The Journal of the Acoustical Society of America.

[114]  G. F. Kuhn Physical acoustics and measurements pertaining to directional hearing , 1983 .

[115]  J J Rosowski,et al.  The effects of external- and middle-ear filtering on auditory threshold and noise-induced hearing loss. , 1991, The Journal of the Acoustical Society of America.

[116]  H Wada,et al.  Dynamical behavior of middle ear: theoretical study corresponding to measurement results obtained by a newly developed measuring apparatus. , 1990, The Journal of the Acoustical Society of America.

[117]  M. Kringlebotn,et al.  Network model for the human middle ear. , 1988, Scandinavian audiology.

[118]  J TONNDORF,et al.  I Closure of the Cochlear Windows: Its Effect upon Air- and Bone-Conduction , 1962, The Annals of otology, rhinology, and laryngology.

[119]  G Zweig,et al.  An empirical bound on the compressibility of the cochlea. , 1992, The Journal of the Acoustical Society of America.

[120]  T. Buunen,et al.  Laser--Doppler velocity meter applied to tympanic membrane vibrations in cat. , 1981, The Journal of the Acoustical Society of America.

[121]  Francis M. Wiener,et al.  Sound Diffraction by Rigid Spheres and Circular Cylinders , 1947 .

[122]  Axel Michelsen,et al.  Hearing and Sound Communication in Small Animals: Evolutionary Adaptations to the Laws of Physics , 1992 .

[123]  Jozef J. Zwislocki,et al.  Analysis of the Middle‐Ear Function. Part II: Guinea‐Pig Ear , 1963 .