Empirical Dust Attenuation Model Leads to More Realistic UVJ Diagram for TNG100 Galaxies

Dust attenuation varies substantially from galaxy to galaxy and as of yet cannot be reproduced from first principles in theoretical models. In Nagaraj et al., we developed the first Bayesian population model of dust attenuation as a function of stellar population properties and projected galaxy shape, built on spectral energy distribution fits of nearly 30,000 galaxies in the 3D-HST grism survey with broadband photometric coverage from the rest-frame UV to IR. In this paper, we apply the model, named “DustE,” to galaxies from the large-volume cosmological simulation TNG100 at z = 1. We produce a UVJ diagram and compare it with one obtained in previous work by applying approximate radiative transfer to the simulated galaxies. We find that the UVJ diagram based on our empirical model is in better agreement with observations than the previous effort, especially in the number density of dusty star-forming galaxies. We also construct the intrinsic dust-free UVJ diagram for TNG100 and 3D-HST galaxies at z ∼ 1, finding qualitative agreement but residual differences at the 10%–20% level. These differences may be caused by the finding that TNG100 galaxies have, on average, 29% younger stellar populations and possibly higher metallicities than observed galaxies.

[1]  Benjamin D. Johnson,et al.  How Well Can We Measure Galaxy Dust Attenuation Curves? The Impact of the Assumed Star-dust Geometry Model in Spectral Energy Distribution Fitting , 2022, The Astrophysical Journal.

[2]  D. Foreman-Mackey,et al.  A Bayesian Population Model for the Observed Dust Attenuation in Galaxies , 2022, The Astrophysical Journal.

[3]  S. Tacchella,et al.  Reproducing the UVJ Color Distribution of Star-forming Galaxies at 0.5 < z < 2.5 with a Geometric Model of Dust Attenuation , 2021, The Astrophysical Journal Letters.

[4]  E. Bell,et al.  Toward Precise Galaxy Evolution: A Comparison between Spectral Indices of z ∼1 Galaxies in the IllustrisTNG Simulation and the LEGA-C Survey , 2021, The Astronomical Journal.

[5]  E. Bell,et al.  The Large Early Galaxy Astrophysics Census (LEGA-C) Data Release 3: 3000 High-quality Spectra of K s -selected Galaxies at z > 0.6 , 2021, The Astrophysical Journal Supplement Series.

[6]  D. Narayanan,et al.  Quenching and the UVJ Diagram in the SIMBA Cosmological Simulation , 2021, The Astrophysical Journal.

[7]  Benjamin D. Johnson,et al.  Stellar Population Inference with Prospector , 2020, The Astrophysical Journal Supplement Series.

[8]  Benjamin D. Johnson,et al.  How Well Can We Measure the Stellar Mass of a Galaxy: The Impact of the Assumed Star Formation History Model in SED Fitting , 2020, The Astrophysical Journal.

[9]  D. Narayanan,et al.  The Dust Attenuation Law in Galaxies , 2020, Annual Review of Astronomy and Astrophysics.

[10]  Benjamin D. Johnson,et al.  A New Census of the 0.2 < z < 3.0 Universe. I. The Stellar Mass Function , 2019, The Astrophysical Journal.

[11]  Johannes L. Schönberger,et al.  SciPy 1.0: fundamental algorithms for scientific computing in Python , 2019, Nature Methods.

[12]  C. Conroy,et al.  Beyond UVJ: More Efficient Selection of Quiescent Galaxies with Ultraviolet/Mid-infrared Fluxes , 2019, The Astrophysical Journal.

[13]  A. Cimatti,et al.  Quiescent Galaxies at z ≳ 2.5: Observations versus Models , 2019, The Astrophysical Journal.

[14]  V. Springel,et al.  Morphology and star formation in IllustrisTNG: the build-up of spheroids and discs , 2019, Monthly Notices of the Royal Astronomical Society.

[15]  J. Speagle dynesty: a dynamic nested sampling package for estimating Bayesian posteriors and evidences , 2019, Monthly Notices of the Royal Astronomical Society.

[16]  R. Ciardullo,et al.  Galaxies of the z ∼ 2 Universe. I. Grism-selected Rest-frame Optical Emission-line Galaxies , 2019, The Astrophysical Journal.

[17]  D. Narayanan,et al.  simba: Cosmological simulations with black hole growth and feedback , 2019, Monthly Notices of the Royal Astronomical Society.

[18]  V. Springel,et al.  The star formation activity of IllustrisTNG galaxies: main sequence, UVJ diagram, quenched fractions, and systematics , 2018, Monthly Notices of the Royal Astronomical Society.

[19]  Benjamin D. Johnson,et al.  An Older, More Quiescent Universe from Panchromatic SED Fitting of the 3D-HST Survey , 2018, Proceedings of the International Astronomical Union.

[20]  Annalisa Pillepich,et al.  The IllustrisTNG simulations: public data release , 2018, Computational Astrophysics and Cosmology.

[21]  J. Speagle,et al.  Towards a radially resolved semi-analytic model for the evolution of disc galaxies tuned with machine learning , 2018, Monthly Notices of the Royal Astronomical Society.

[22]  S. Belli,et al.  MOSFIRE Spectroscopy of Quiescent Galaxies at 1.5 < z < 2.5. II. Star Formation Histories and Galaxy Quenching , 2018, The Astrophysical Journal.

[23]  V. Wild,et al.  Fast and Slow Paths to Quiescence: Ages and Sizes of 400 Quiescent Galaxies from the LEGA-C Survey , 2018, The Astrophysical Journal.

[24]  M. Boquien,et al.  Dust Attenuation Curves in the Local Universe: Demographics and New Laws for Star-forming Galaxies and High-redshift Analogs , 2018, 1804.05850.

[25]  Miguel de Val-Borro,et al.  The Astropy Project: Building an Open-science Project and Status of the v2.0 Core Package , 2018, The Astronomical Journal.

[26]  G. Barro,et al.  SHARDS: constraints on the dust attenuation law of star-forming galaxies at z∼2 , 2018, 1801.01128.

[27]  A. Jones,et al.  The Interstellar Dust Properties of Nearby Galaxies , 2017, Annual Review of Astronomy and Astrophysics.

[28]  V. Springel,et al.  First results from the IllustrisTNG simulations: radio haloes and magnetic fields , 2017, Monthly Notices of the Royal Astronomical Society.

[29]  Annalisa Pillepich,et al.  First results from the IllustrisTNG simulations: the stellar mass content of groups and clusters of galaxies , 2017, 1707.03406.

[30]  Cca,et al.  First results from the IllustrisTNG simulations: matter and galaxy clustering , 2017, 1707.03397.

[31]  G. Kauffmann,et al.  First results from the IllustrisTNG simulations: the galaxy colour bimodality , 2017, 1707.03395.

[32]  E. Ramirez-Ruiz,et al.  First results from the IllustrisTNG simulations: a tale of two elements - chemical evolution of magnesium and europium , 2017, 1707.03401.

[33]  R. Dav'e,et al.  mufasa: the assembly of the red sequence , 2017, 1704.01135.

[34]  Annalisa Pillepich,et al.  Simulating galaxy formation with the IllustrisTNG model , 2017, 1703.02970.

[35]  Benjamin D. Johnson,et al.  Nebular Continuum and Line Emission in Stellar Population Synthesis Models , 2016, 1611.08305.

[36]  M. Dickinson,et al.  GALEX–SDSS–WISE LEGACY CATALOG (GSWLC): STAR FORMATION RATES, STELLAR MASSES, AND DUST ATTENUATIONS OF 700,000 LOW-REDSHIFT GALAXIES , 2016, 1610.00712.

[37]  Benjamin D. Johnson,et al.  Deriving Physical Properties from Broadband Photometry with Prospector: Description of the Model and a Demonstration of its Accuracy Using 129 Galaxies in the Local Universe , 2016, 1609.09073.

[38]  C. A. Oxborrow,et al.  Planck2015 results , 2015, Astronomy &amp; Astrophysics.

[39]  A. V. D. Wel,et al.  Predicting Quiescence: The Dependence of Specific Star Formation Rate on Galaxy Size and Central Density at 0.5 < z < 2.5 , 2016, 1607.03107.

[40]  John Salvatier,et al.  Probabilistic programming in Python using PyMC3 , 2016, PeerJ Comput. Sci..

[41]  M. Franx,et al.  THE VLT LEGA-C SPECTROSCOPIC SURVEY: THE PHYSICS OF GALAXIES AT A LOOKBACK TIME OF 7 Gyr , 2016, 1603.05479.

[42]  Mattia Fumagalli,et al.  THE 3D-HST SURVEY: HUBBLE SPACE TELESCOPE WFC3/G141 GRISM SPECTRA, REDSHIFTS, AND EMISSION LINE MEASUREMENTS FOR ∼100,000 GALAXIES , 2015, 1510.02106.

[43]  V. Springel,et al.  Introducing the Illustris Project: the evolution of galaxy populations across cosmic time , 2014, 1405.3749.

[44]  Shannon G. Patel,et al.  3D-HST WFC3-SELECTED PHOTOMETRIC CATALOGS IN THE FIVE CANDELS/3D-HST FIELDS: PHOTOMETRY, PHOTOMETRIC REDSHIFTS, AND STELLAR MASSES , 2014, 1403.3689.

[45]  A. Dekel,et al.  On the origin of the fundamental metallicity relation and the scatter in galaxy scaling relations , 2013, 1311.1509.

[46]  Bruno Milliard,et al.  Encoding of the infrared excess in the NUVrK color diagram for star-forming galaxies , 2013, 1309.0008.

[47]  C. Conroy Modeling the Panchromatic Spectral Energy Distributions of Galaxies , 2013, 1301.7095.

[48]  D. Elbaz,et al.  GOODS-Herschel: dust attenuation properties of UV selected high redshift galaxies , 2012, 1207.3528.

[49]  Garth D. Illingworth,et al.  3D-HST: A WIDE-FIELD GRISM SPECTROSCOPIC SURVEY WITH THE HUBBLE SPACE TELESCOPE , 2012, 1204.2829.

[50]  V. Wild,et al.  Empirical determination of the shape of dust attenuation curves in star-forming galaxies , 2011, 1106.1646.

[51]  S. Ravindranath,et al.  CANDELS: THE COSMIC ASSEMBLY NEAR-INFRARED DEEP EXTRAGALACTIC LEGACY SURVEY—THE HUBBLE SPACE TELESCOPE OBSERVATIONS, IMAGING DATA PRODUCTS, AND MOSAICS , 2011, 1105.3753.

[52]  A. Cimatti,et al.  GMASS ultradeep spectroscopy of galaxies at z ~ 2 - IV. The variety of dust populations , 2009, 0903.3972.

[53]  P. P. van der Werf,et al.  What Do We Learn from IRAC Observations of Galaxies at 2 < z < 3.5? , 2006, astro-ph/0609548.

[54]  M. Skrutskie,et al.  The Two Micron All Sky Survey (2MASS) , 2006 .

[55]  Spain.,et al.  Star formation and dust attenuation properties in galaxies from a statistical ultraviolet‐to‐far‐infrared analysis , 2005, astro-ph/0504434.

[56]  B. Draine INTERSTELLAR DUST GRAINS , 2003, astro-ph/0304489.

[57]  G. Chabrier Galactic Stellar and Substellar Initial Mass Function , 2003, astro-ph/0304382.

[58]  S. M. Fall,et al.  A Simple Model for the Absorption of Starlight by Dust in Galaxies , 2000, astro-ph/0003128.

[59]  A. Kinney,et al.  The Dust Content and Opacity of Actively Star-forming Galaxies , 1999, astro-ph/9911459.

[60]  A. Kinney,et al.  Dust extinction of the stellar continua in starburst galaxies: The Ultraviolet and optical extinction law , 1994 .

[61]  J. B. Oke Absolute spectral energy distributions for white dwarfs , 1974 .

[62]  V. Wild,et al.  Insights into the content and spatial distribution of dust from the integrated spectral properties of galaxies , 2013, Monthly Notices of the Royal Astronomical Society.

[63]  M. Bessell,et al.  UBVRI PASSBANDS. , 1990 .