Dual consistency and functional accuracy: a finite-difference perspective

Consider the discretization of a partial differential equation (PDE) and an integral functional that depends on the PDE solution. The discretization is dual consistent if it leads to a discrete dual problem that is a consistent approximation of the corresponding continuous dual problem. Consequently, a dual-consistent discretization is a synthesis of the so-called discrete-adjoint and continuous-adjoint approaches. We highlight the impact of dual consistency on summation-by-parts (SBP) finite-difference discretizations of steady-state PDEs; specifically, superconvergent functionals and accurate functional error estimates. In the case of functional superconvergence, the discrete-adjoint variables do not need to be computed, since dual consistency on its own is sufficient. Numerical examples demonstrate that dual-consistent schemes significantly outperform dual-inconsistent schemes in terms of functional accuracy and error-estimate effectiveness. The dual-consistent and dual-inconsistent discretizations have similar computational costs, so dual consistency leads to improved efficiency. To illustrate the dual consistency analysis of SBP schemes, we thoroughly examine a discretization of the Euler equations of gas dynamics, including the treatment of the boundary conditions, numerical dissipation, interface penalties, and quadrature by SBP norms.

[1]  M. Giles,et al.  Algorithm Developments for Discrete Adjoint Methods , 2003 .

[2]  John C. Vassberg,et al.  In Pursuit of Grid Convergence for Two-Dimensional Euler Solutions , 2009 .

[3]  D. Gottlieb,et al.  A new method of imposing boundary conditions in pseudospectral approximations of hyperbolic equations , 1988 .

[4]  M. D. Salas,et al.  On Problems Associated with Grid Convergence of Functionals , 2009 .

[5]  T. Barth,et al.  An unstructured mesh Newton solver for compressible fluid flow and its parallel implementation , 1995 .

[6]  Jason E. Hicken,et al.  A Simplified and Flexible Variant of GCROT for Solving Nonsymmetric Linear Systems , 2010, SIAM J. Sci. Comput..

[7]  Tang Zhi,et al.  Control theory based airfoil design using Euler equations , 2001 .

[8]  E. Sturler,et al.  Nested Krylov methods based on GCR , 1996 .

[9]  George Trapp,et al.  Using Complex Variables to Estimate Derivatives of Real Functions , 1998, SIAM Rev..

[10]  G. R. Shubin,et al.  A comparison of optimization-based approaches for a model computational aerodynamics design problem , 1992 .

[11]  T. Pulliam Efficient solution methods for the Navier-Stokes equations , 1986 .

[12]  Mohamed Gad-el-Hak,et al.  New Approach to Constrained Shape Optimization Using Genetic Algorithms , 1998 .

[13]  Magnus Svärd,et al.  A stable high-order finite difference scheme for the compressible Navier-Stokes equations, far-field boundary conditions , 2007, J. Comput. Phys..

[14]  Jason E. Hicken Output error estimation for summation-by-parts finite-difference schemes , 2012, J. Comput. Phys..

[15]  J. Nordström,et al.  Summation by Parts Operators for Finite Difference Approximations of Second-Derivatives with Variable Coefficients , 2004, Journal of Scientific Computing.

[16]  M. Giles,et al.  Adjoint methods for PDEs: a posteriori error analysis and postprocessing by duality , 2002, Acta Numerica.

[17]  O. Pironneau,et al.  SHAPE OPTIMIZATION IN FLUID MECHANICS , 2004 .

[18]  M. J. Rimlinger,et al.  Constrained Multipoint Aerodynamic Shape Optimization Using an Adjoint Formulation and Parallel Computers , 1997 .

[19]  J. Anderson,et al.  Fundamentals of Aerodynamics , 1984 .

[20]  Jason E. Hicken,et al.  Aerodynamic Optimization Algorithm with Integrated Geometry Parameterization and Mesh Movement , 2010 .

[21]  Timothy J. Baker,et al.  Mesh generation: Art or science? , 2005 .

[22]  Jason E. Hicken,et al.  Parallel Newton-Krylov Solver for the Euler Equations Discretized Using Simultaneous-Approximation Terms , 2008 .

[23]  M. J. Rimlinger,et al.  Constrained Multipoint Aerodynamic Shape Optimization Using an Adjoint Formulation and Parallel Computers , 1997 .

[24]  Michael B. Giles,et al.  Adjoint Recovery of Superconvergent Functionals from PDE Approximations , 2000, SIAM Rev..

[25]  J. Gillis,et al.  Linear Differential Operators , 1963 .

[26]  Magnus Svärd,et al.  Stable and Accurate Artificial Dissipation , 2004, J. Sci. Comput..

[27]  D. Gottlieb,et al.  A Stable and Conservative Interface Treatment of Arbitrary Spatial Accuracy , 1999 .

[28]  S. Allmaras,et al.  Lagrange Multiplier Implementation of Dirichlet Boundary Conditions in Compressible Navier-Stokes Finite Element Methods , 2005 .

[29]  Jason E. Hicken,et al.  Superconvergent Functional Estimates from Summation-By-Parts Finite-Difference Discretizations , 2011, SIAM J. Sci. Comput..

[30]  J. Nitsche Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind , 1971 .

[31]  O. Baysal,et al.  Aerodynamic Sensitivity Analysis Methods for the Compressible Euler Equations , 1991 .

[32]  Magnus Svärd,et al.  A stable high-order finite difference scheme for the compressible Navier-Stokes equations: No-slip wall boundary conditions , 2008, J. Comput. Phys..

[33]  O. Pironneau On optimum design in fluid mechanics , 1974 .

[34]  James Lu,et al.  An a posteriori Error Control Framework for Adaptive Precision Optimization using Discontinuous Galerkin Finite Element Method , 2005 .

[35]  E. Nielsen,et al.  Efficient Construction of Discrete Adjoint Operators on Unstructured Grids Using Complex Variables , 2005 .

[36]  D. Darmofal,et al.  Review of Output-Based Error Estimation and Mesh Adaptation in Computational Fluid Dynamics , 2011 .

[37]  Philip L. Roe,et al.  An Entropy Adjoint Approach to Mesh Refinement , 2010, SIAM J. Sci. Comput..

[38]  S. Scott Collis,et al.  Analysis of the Streamline Upwind/Petrov Galerkin Method Applied to the Solution of Optimal Control Problems ∗ , 2002 .

[39]  Antony Jameson,et al.  Aerodynamic design via control theory , 1988, J. Sci. Comput..

[40]  Joaquim R. R. A. Martins,et al.  The complex-step derivative approximation , 2003, TOMS.

[41]  H. Kreiss,et al.  Finite Element and Finite Difference Methods for Hyperbolic Partial Differential Equations , 1974 .

[42]  Jing Gong,et al.  A stable and conservative high order multi-block method for the compressible Navier-Stokes equations , 2009, J. Comput. Phys..

[43]  Jason E. Hicken,et al.  Summation-by-parts operators and high-order quadrature , 2011, J. Comput. Appl. Math..

[44]  D. Venditti,et al.  Adjoint error estimation and grid adaptation for functional outputs: application to quasi-one-dimensional flow , 2000 .

[45]  Max Gunzburger,et al.  Perspectives in flow control and optimization , 1987 .

[46]  Ralf Hartmann,et al.  Adjoint Consistency Analysis of Discontinuous Galerkin Discretizations , 2007, SIAM J. Numer. Anal..

[47]  David W. Zingg,et al.  Numerical aerodynamic optimization incorporating laminar-turbulent transition prediction , 2007 .

[48]  Magnus Svärd,et al.  On Coordinate Transformations for Summation-by-Parts Operators , 2004, J. Sci. Comput..

[49]  Masha Sosonkina,et al.  Distributed Schur Complement Techniques for General Sparse Linear Systems , 1999, SIAM J. Sci. Comput..

[50]  P. Goldbart,et al.  Linear differential operators , 1967 .

[51]  Mathias Wintzer,et al.  Adjoint-Based Adaptive Mesh Refinement for Complex Geometries , 2008 .

[52]  Jan Nordström,et al.  Revisiting and Extending Interface Penalties for Multi-domain Summation-by-Parts Operators , 2010, J. Sci. Comput..

[53]  W. K. Anderson,et al.  Airfoil Design on Unstructured Grids for Turbulent Flows , 1999 .

[54]  Claes Johnson,et al.  Adaptive error control for multigrid finite element , 1995, Computing.

[55]  E. Sturler,et al.  Truncation Strategies for Optimal Krylov Subspace Methods , 1999 .

[56]  R. C. Swanson,et al.  On Central-Difference and Upwind Schemes , 1992 .

[57]  Ken Mattsson,et al.  Summation by Parts Operators for Finite Difference Approximations of Second-Derivatives with Variable Coefficients , 2012, J. Sci. Comput..

[58]  D. Gottlieb,et al.  Time-stable boundary conditions for finite-difference schemes solving hyperbolic systems: methodology and application to high-order compact schemes , 1994 .