Knapsack problem with probability constraints
暂无分享,去创建一个
Abdel Lisser | Hu Xu | Alexei A. Gaivoronski | Rafael Lopez | A. Gaivoronski | A. Lisser | Hu Xu | R. Lopez
[1] David Pisinger,et al. The quadratic knapsack problem - a survey , 2007, Discret. Appl. Math..
[2] Franz Rendl,et al. Combining Semidefinite and Polyhedral Relaxations for Integer Programs , 1995, IPCO.
[3] Oscar H. Ibarra,et al. Fast Approximation Algorithms for the Knapsack and Sum of Subset Problems , 1975, JACM.
[4] Hanif D. Sherali,et al. A Hierarchy of Relaxations Between the Continuous and Convex Hull Representations for Zero-One Programming Problems , 1990, SIAM J. Discret. Math..
[5] David S. Johnson,et al. Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .
[6] Monique Laurent,et al. A Comparison of the Sherali-Adams, Lovász-Schrijver, and Lasserre Relaxations for 0-1 Programming , 2003, Math. Oper. Res..
[7] C. Helmberg,et al. Solving quadratic (0,1)-problems by semidefinite programs and cutting planes , 1998 .
[8] Anton J. Kleywegt,et al. The Dynamic and Stochastic Knapsack Problem , 1998, Oper. Res..
[9] R. Weismantel,et al. A Semidefinite Programming Approach to the Quadratic Knapsack Problem , 2000, J. Comb. Optim..
[10] Warren P. Adams,et al. A hierarchy of relaxation between the continuous and convex hull representations , 1990 .
[11] Siti Mariyam Hj. Shamsuddin,et al. Binary Accelerated Particle Swarm Algorithm (BAPSA) for discrete optimization problems , 2012, Journal of Global Optimization.
[12] J. Vondrák,et al. Approximating the Stochastic Knapsack Problem: The Benefit of Adaptivity , 2008 .
[13] David S. Johnson,et al. Computers and In stractability: A Guide to the Theory of NP-Completeness. W. H Freeman, San Fran , 1979 .
[14] R. Fortet. L’algebre de Boole et ses applications en recherche operationnelle , 1960 .
[15] Chaitanya Swamy,et al. An approximation scheme for stochastic linear programming and its application to stochastic integer programs , 2006, JACM.
[16] Manfred W. Padberg,et al. The boolean quadric polytope: Some characteristics, facets and relatives , 1989, Math. Program..
[17] Franz Rendl,et al. A Spectral Bundle Method for Semidefinite Programming , 1999, SIAM J. Optim..
[18] L. Lovász,et al. Geometric Algorithms and Combinatorial Optimization , 1981 .
[19] Abdel Lisser,et al. Stochastic nuclear outages semidefinite relaxations , 2012, Comput. Manag. Sci..
[20] David P. Williamson,et al. Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming , 1995, JACM.
[21] Franz Rendl,et al. Bounds for the quadratic assignment problem using the bundle method , 2007, Math. Program..
[22] A. Cohn,et al. The Stochastic Knapsack Problem with Random Weights : A Heuristic Approach to Robust Transportation Planning , 1998 .
[23] Hanif D. Sherali,et al. A Hierarchy of Relaxations and Convex Hull Characterizations for Mixed-integer Zero-one Programming Problems , 1994, Discret. Appl. Math..
[24] M. Drenth. San Juan, Puerto Rico , 2001 .