Pleiotropic tumor suppressor functions of WWOX antagonize metastasis

[1]  L. Hsu,et al.  Strategies by which WWOX-deficient metastatic cancer cells utilize to survive via dodging, compromising, and causing damage to WWOX-positive normal microenvironment , 2019, Cell Death Discovery.

[2]  R. Aqeilan,et al.  Decoding the link between WWOX and p53 in aggressive breast cancer , 2019, Cell cycle.

[3]  C. Croce,et al.  WWOX Inhibits Metastasis of Triple-Negative Breast Cancer Cells via Modulation of miRNAs. , 2019, Cancer research.

[4]  Junjie Chen,et al.  Delineating WWOX Protein Interactome by Tandem Affinity Purification-Mass Spectrometry: Identification of Top Interactors and Key Metabolic Pathways Involved , 2018, Front. Oncol..

[5]  Juan Li,et al.  The downregulation of WWOX induces epithelial–mesenchymal transition and enhances stemness and chemoresistance in breast cancer , 2018, Experimental biology and medicine.

[6]  Yingyong Hou,et al.  Loss of Wwox drives metastasis in triple-negative breast cancer by JAK2/STAT3 axis , 2018, Nature Communications.

[7]  R. Aqeilan,et al.  Somatic loss of WWOX is associated with TP53 perturbation in basal-like breast cancer , 2018, Cell Death & Disease.

[8]  Glenn E. Simmons,et al.  Dishevelled: A masterful conductor of complex Wnt signals. , 2018, Cellular signalling.

[9]  Jie Zhu,et al.  Overexpression of SCAMP3 is an indicator of poor prognosis in hepatocellular carcinoma , 2017, Oncotarget.

[10]  L. Hsu,et al.  HYAL-2–WWOX–SMAD4 Signaling in Cell Death and Anticancer Response , 2016, Front. Cell Dev. Biol..

[11]  J. Heath,et al.  Hyaluronan activates Hyal-2/WWOX/Smad4 signaling and causes bubbling cell death when the signaling complex is overexpressed , 2016, Oncotarget.

[12]  J. Massagué,et al.  Metastatic colonization by circulating tumour cells , 2016, Nature.

[13]  O. Schueler‐Furman,et al.  Pleiotropic Functions of Tumor Suppressor WWOX in Normal and Cancer Cells* , 2015, The Journal of Biological Chemistry.

[14]  O. Sansom,et al.  E-cadherin can limit the transforming properties of activating β-catenin mutations , 2015, The EMBO journal.

[15]  H. Dweep,et al.  miRWalk2.0: a comprehensive atlas of microRNA-target interactions , 2015, Nature Methods.

[16]  Jun Yao,et al.  14-3-3ζ turns TGF-β's function from tumor suppressor to metastasis promoter in breast cancer by contextual changes of Smad partners from p53 to Gli2. , 2015, Cancer cell.

[17]  R. Aqeilan,et al.  WWOX, the common fragile site FRA16D gene product, regulates ATM activation and the DNA damage response , 2014, Proceedings of the National Academy of Sciences.

[18]  R. Aqeilan,et al.  The common fragile site FRA16D gene product WWOX: roles in tumor suppression and genomic stability , 2014, Cellular and Molecular Life Sciences.

[19]  Philip M. Kim,et al.  Characterizing WW Domain Interactions of Tumor Suppressor WWOX Reveals Its Association with Multiprotein Networks* , 2014, The Journal of Biological Chemistry.

[20]  R. Aqeilan,et al.  WW domain-containing oxidoreductase’s role in myriad cancers: Clinical significance and future implications , 2014, Experimental biology and medicine.

[21]  B. Ferguson,et al.  The cancer gene WWOX behaves as an inhibitor of SMAD3 transcriptional activity via direct binding , 2013, BMC Cancer.

[22]  G. Sledge,et al.  Wnt signaling in triple negative breast cancer is associated with metastasis , 2013, BMC Cancer.

[23]  J. Massagué,et al.  Review Origins of Metastatic Traits , 2022 .

[24]  Samy Lamouille,et al.  TGF-&bgr; signaling and epithelial–mesenchymal transition in cancer progression , 2013, Current opinion in oncology.

[25]  C. Heldin,et al.  Regulation of EMT by TGFβ in cancer , 2012, FEBS letters.

[26]  B. Ferguson,et al.  Conditional Wwox Deletion in Mouse Mammary Gland by Means of Two Cre Recombinase Approaches , 2012, PloS one.

[27]  C. Croce,et al.  Wwox inactivation enhances mammary tumorigenesis , 2011, Oncogene.

[28]  J. Teo,et al.  The Wnt signaling pathway in cellular proliferation and differentiation: A tale of two coactivators. , 2010, Advanced drug delivery reviews.

[29]  Shean-Jen Chen,et al.  Signaling from membrane receptors to tumor suppressor WW domain-containing oxidoreductase , 2010, Experimental biology and medicine.

[30]  A. Hyman,et al.  Quantitative proteomics combined with BAC TransgeneOmics reveals in vivo protein interactions , 2010, The Journal of cell biology.

[31]  R. Aqeilan,et al.  WWOX gene and gene product: tumor suppression through specific protein interactions. , 2010, Future oncology.

[32]  W. Birchmeier,et al.  Interplay of cadherin-mediated cell adhesion and canonical Wnt signaling. , 2010, Cold Spring Harbor perspectives in biology.

[33]  Derek Y. Chiang,et al.  The landscape of somatic copy-number alteration across human cancers , 2010, Nature.

[34]  Yingqun Wang Breast cancer metastasis driven by ErbB2 and 14-3-3ξ , 2010, Cell adhesion & migration.

[35]  R. Aqeilan,et al.  WWOX: Its genomics, partners, and functions , 2009, Journal of cellular biochemistry.

[36]  F. Lallemand,et al.  Inhibition of the Wnt/β-catenin pathway by the WWOX tumor suppressor protein , 2009, Oncogene.

[37]  J. Heath,et al.  Transforming Growth Factor β1 Signaling via Interaction with Cell Surface Hyal-2 and Recruitment of WWOX/WOX1* , 2009, The Journal of Biological Chemistry.

[38]  K. Basler,et al.  β-Catenin hits chromatin: regulation of Wnt target gene activation , 2009, Nature Reviews Molecular Cell Biology.

[39]  George Poste,et al.  The "seed and soil" hypothesis revisited. , 2008, The Lancet. Oncology.

[40]  Roger R. Gomis,et al.  TGFβ Primes Breast Tumors for Lung Metastasis Seeding through Angiopoietin-like 4 , 2008, Cell.

[41]  C. Croce,et al.  Association of Wwox with ErbB4 in breast cancer. , 2007, Cancer research.

[42]  C. Croce,et al.  WWOX in biological control and tumorigenesis , 2007, Journal of cellular physiology.

[43]  D. Wedlich,et al.  Wnt-5A/Ror2 regulate expression of XPAPC through an alternative noncanonical signaling pathway. , 2007, Developmental cell.

[44]  C. Croce,et al.  WWOX Expression in Different Histologic Types and Subtypes of Non–Small Cell Lung Cancer , 2007, Clinical Cancer Research.

[45]  Mitch Leslie,et al.  Brief encounter , 2006, The Journal of Cell Biology.

[46]  K. Jones,et al.  Wnt signaling: is the party in the nucleus? , 2006, Genes & development.

[47]  D. Gomes,et al.  Characterization of the tumor suppressor gene WWOX in primary human oral squamous cell carcinomas , 2006, International journal of cancer.

[48]  Hideki Yamamoto,et al.  Regulation of Wnt signaling by protein-protein interaction and post-translational modifications , 2006, Experimental & Molecular Medicine.

[49]  R. Moon Wnt/β-Catenin Pathway , 2005, Science's STKE.

[50]  J. Ludes-Meyers,et al.  Frequent downregulation and loss of WWOX gene expression in human hepatocellular carcinoma , 2004, British Journal of Cancer.

[51]  Y. Pekarsky,et al.  Loss of WWOX Expression in Gastric Carcinoma , 2004, Clinical Cancer Research.

[52]  D. Iliopoulos,et al.  The fragile genes FHIT and WWOX are inactivated coordinately in invasive breast carcinoma , 2004, Cancer.

[53]  Y. Pekarsky,et al.  Functional association between Wwox tumor suppressor protein and p73, a p53 homolog. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[54]  K. Green Faculty Opinions recommendation of Autoregulation of E-cadherin expression by cadherin-cadherin interactions: the roles of beta-catenin signaling, Slug, and MAPK. , 2004 .

[55]  Avri Ben-Ze'ev,et al.  Autoregulation of E-cadherin expression by cadherin–cadherin interactions , 2003, The Journal of cell biology.

[56]  Jeffrey D. Axelrod,et al.  A Second Canon , 2003 .

[57]  I. Fidler,et al.  The pathogenesis of cancer metastasis: the 'seed and soil' hypothesis revisited , 2003, Nature Reviews Cancer.

[58]  Allan Balmain,et al.  TGF-β signaling in tumor suppression and cancer progression , 2001, Nature Genetics.

[59]  D J Porteous,et al.  WWOX: A candidate tumor suppressor gene involved in multiple tumor types , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[60]  M. Hung,et al.  β-Catenin, a novel prognostic marker for breast cancer: Its roles in cyclin D1 expression and cancer progression , 2000 .

[61]  Takako Onishi,et al.  AMY‐1, a novel C‐MYC binding protein that stimulates transcription activity of C‐MYC , 1998, Genes to cells : devoted to molecular & cellular mechanisms.

[62]  Ivette J. Suárez-Arroyo,et al.  The proteome signature of the inflammatory breast cancer plasma membrane identifies novel molecular markers of disease. , 2016, American journal of cancer research.

[63]  Tsung-Cheng Chang,et al.  Widespread microRNA repression by Myc contributes to tumorigenesis , 2008, Nature Genetics.

[64]  A. Sahin,et al.  Frequent loss of WWOX expression in breast cancer: correlation with estrogen receptor status , 2004, Breast Cancer Research and Treatment.

[65]  Randall T Moon,et al.  A second canon. Functions and mechanisms of beta-catenin-independent Wnt signaling. , 2003, Developmental cell.

[66]  Masafumi Nakamura,et al.  Pin1 regulates turnover and subcellular localization of β-catenin by inhibiting its interaction with APC , 2001, Nature Cell Biology.

[67]  M. Hung,et al.  Beta-catenin, a novel prognostic marker for breast cancer: its roles in cyclin D1 expression and cancer progression. , 2000, Proceedings of the National Academy of Sciences of the United States of America.