A Fujita type global existence-global nonexistence theorem for a weakly coupled system of reaction-diffusion equations
暂无分享,去创建一个
[1] G. A. Watson. A treatise on the theory of Bessel functions , 1944 .
[2] P. Meier,et al. Existence et non-existence de solutions globales d'une équation de la chaleur semi-linéaire: extension d'un théorème de Fujita , 1986 .
[3] Howard A. Levine,et al. The value of the critical exponent for reaction-diffusion equations in cones , 1990 .
[4] Catherine Bandle,et al. On the existence and nonexistence of global solutions of reaction-diffusion equations in sectorial domains , 1989 .
[5] Miguel A. Herrero,et al. Boundedness and blow up for a semilinear reaction-diffusion system , 1991 .
[6] Geometrical implications of the existence of very smooth bump functions in Banach spaces , 1989 .
[7] A. Friedman. Partial Differential Equations of Parabolic Type , 1983 .
[8] Howard A. Levine,et al. A blowup result for the critical exponent in cones , 1989 .
[9] F. Weissler. Existence and non-existence of global solutions for a semilinear heat equation , 1981 .
[10] Howard A. Levine,et al. Fujita type results for convective-like reaction diffusion equations in exterior domains , 1989 .
[11] Howard A. Levine,et al. The Role of Critical Exponents in Blowup Theorems , 1990, SIAM Rev..
[12] H. Weinberger,et al. Maximum principles in differential equations , 1967 .