Climate and edaphic factors drive soil nematode diversity and community composition in urban ecosystems

[1]  A. Risch,et al.  Biotic responses to climate extremes in terrestrial ecosystems , 2022, iScience.

[2]  S. Caula,et al.  Impact of Urbanization to an Island and the Continent: Species Turnover and Nestedness in Neotropical Bird Assemblages , 2021, Frontiers in Ecology and Evolution.

[3]  H. Jo,et al.  Diversity and composition of soil Acidobacteria and Proteobacteria communities as a bacterial indicator of past land-use change from forest to farmland. , 2021, The Science of the total environment.

[4]  S. Geisen,et al.  Agricultural habitats are dominated by rapidly evolving nematodes revealed through phylogenetic comparative methods , 2021 .

[5]  Xiaoling Zhang,et al.  Urbanization can benefit agricultural production with large-scale farming in China , 2021, Nature Food.

[6]  C. Guerra,et al.  Tracking, targeting, and conserving soil biodiversity , 2021, Science.

[7]  L. Tedersoo,et al.  Towards revealing the global diversity and community assembly of soil eukaryotes. , 2021, Ecology letters.

[8]  S. Geisen,et al.  Organism body size structures the soil microbial and nematode community assembly at a continental and global scale , 2020, Nature Communications.

[9]  S. Caul,et al.  Microbial community size is a potential predictor of nematode functional group in limed grasslands , 2020 .

[10]  Jessica A. M. Moore,et al.  Fungal community structure and function shifts with atmospheric nitrogen deposition , 2020, Global change biology.

[11]  D. Blumstein,et al.  Opinion: Urban Biodiversity and the Importance of Scale. , 2020, Trends in ecology & evolution.

[12]  D. Or,et al.  The physical structure of soil: Determinant and consequence of trophic interactions , 2020 .

[13]  Z. Ouyang,et al.  Land-use intensity indirectly affects soil multifunctionality via a cascade effect of plant diversity on soil bacterial diversity , 2020 .

[14]  M. Ferrante,et al.  Only habitat specialists become smaller with advancing urbanization , 2020 .

[15]  K. Szlavecz,et al.  Earthworm assemblages in urban habitats across biogeographical regions , 2020, Applied Soil Ecology.

[16]  C. Donihue,et al.  Urban biodiversity management using evolutionary tools , 2020, Nature Ecology & Evolution.

[17]  N. Eisenhauer,et al.  Climate change and land use induce functional shifts in soil nematode communities , 2019, Oecologia.

[18]  C. Guerra,et al.  Towards an integrative understanding of soil biodiversity , 2019, Biological reviews of the Cambridge Philosophical Society.

[19]  Madhav P. Thakur,et al.  Trophic Regulations of the Soil Microbiome. , 2019, Trends in microbiology.

[20]  Diana H. Wall,et al.  Soil nematode abundance and functional group composition at a global scale , 2019, Nature.

[21]  J. Eom,et al.  Projecting Global Urban Area Growth Through 2100 Based on Historical Time Series Data and Future Shared Socioeconomic Pathways , 2019, Earth's Future.

[22]  M. Tschapka,et al.  Climate–land-use interactions shape tropical mountain biodiversity and ecosystem functions , 2019, Nature.

[23]  Xi-sheng Hu,et al.  The effects of urbanization on China's forest loss from 2000 to 2012: Evidence from a panel analysis , 2019, Journal of Cleaner Production.

[24]  J. Moore,et al.  Long-term nitrogen addition shifts the soil nematode community to bacterivore-dominated and reduces its ecological maturity in a subalpine forest , 2019, Soil Biology and Biochemistry.

[25]  P. Grewal,et al.  Agricultural intensification and urbanization negatively impact soil nematode richness and abundance: a meta-analysis , 2019, Journal of nematology.

[26]  Kate M. Buckeridge,et al.  Land use driven change in soil pH affects microbial carbon cycling processes , 2018, Nature Communications.

[27]  Tom A. August,et al.  Extinction risk from climate change is reduced by microclimatic buffering , 2018, Nature Climate Change.

[28]  K.,et al.  Homogenization of plant diversity, composition, and structure in North American urban yards , 2018 .

[29]  Stephen E. Fick,et al.  WorldClim 2: new 1‐km spatial resolution climate surfaces for global land areas , 2017 .

[30]  Mark A. Goddard,et al.  Biodiversity in the City: Fundamental Questions for Understanding the Ecology of Urban Green Spaces for Biodiversity Conservation , 2017 .

[31]  T. Merckx,et al.  Urbanization drives community shifts towards thermophilic and dispersive species at local and landscape scales , 2017, Global change biology.

[32]  Kaiwen Pan,et al.  Large-scale patterns of distribution and diversity of terrestrial nematodes , 2017 .

[33]  K. Szlavecz,et al.  Urbanization erodes ectomycorrhizal fungal diversity and may cause microbial communities to converge , 2017, Nature Ecology &Evolution.

[34]  F. Creutzig,et al.  Future urban land expansion and implications for global croplands , 2016, Proceedings of the National Academy of Sciences.

[35]  M. Lange,et al.  Land-use intensification causes multitrophic homogenization of grassland communities , 2016, Nature.

[36]  Jihua Wu,et al.  Latitudinal variation in nematode diversity and ecological roles along the Chinese coast , 2016, Ecology and evolution.

[37]  E. Knop Biotic homogenization of three insect groups due to urbanization , 2016, Global change biology.

[38]  M. Nobis,et al.  Impacts of urbanisation on biodiversity: the role of species mobility, degree of specialisation and spatial scale , 2015 .

[39]  J. Six,et al.  Soil biodiversity and human health , 2015, Nature.

[40]  Michael Veith,et al.  Biodiversity in cities needs space: a meta-analysis of factors determining intra-urban biodiversity variation. , 2015, Ecology letters.

[41]  Richard D. Bardgett,et al.  Belowground biodiversity and ecosystem functioning , 2014, Nature.

[42]  X. Bai,et al.  Society: Realizing China's urban dream , 2014, Nature.

[43]  Peter H Verburg,et al.  Land cover change or land‐use intensification: simulating land system change with a global‐scale land change model , 2013, Global change biology.

[44]  Robert C. Edgar,et al.  UPARSE: highly accurate OTU sequences from microbial amplicon reads , 2013, Nature Methods.

[45]  Ciro Gardi,et al.  An estimate of potential threats levels to soil biodiversity in EU , 2013, Global change biology.

[46]  Christopher B Sturdy,et al.  Anthropogenic noise decreases urban songbird diversity and may contribute to homogenization , 2013, Global change biology.

[47]  D. Neher,et al.  Soil nematode genera that predict specific types of disturbance , 2013 .

[48]  Pelin Yilmaz,et al.  The SILVA ribosomal RNA gene database project: improved data processing and web-based tools , 2012, Nucleic Acids Res..

[49]  K. Seto,et al.  Global forecasts of urban expansion to 2030 and direct impacts on biodiversity and carbon pools , 2012, Proceedings of the National Academy of Sciences.

[50]  Marcel Martin Cutadapt removes adapter sequences from high-throughput sequencing reads , 2011 .

[51]  David Satterthwaite,et al.  Urbanization and its implications for food and farming , 2010, Philosophical Transactions of the Royal Society B: Biological Sciences.

[52]  William A. Walters,et al.  QIIME allows analysis of high-throughput community sequencing data , 2010, Nature Methods.

[53]  A. Baselga Partitioning the turnover and nestedness components of beta diversity , 2010 .

[54]  P. Legendre,et al.  Associations between species and groups of sites: indices and statistical inference. , 2009, Ecology.

[55]  Abraham E. Tucker,et al.  Evaluating high‐throughput sequencing as a method for metagenomic analysis of nematode diversity , 2009, Molecular ecology resources.

[56]  Adam P. Arkin,et al.  FastTree: Computing Large Minimum Evolution Trees with Profiles instead of a Distance Matrix , 2009, Molecular biology and evolution.

[57]  Rattan Lal,et al.  Biogeochemical C and N cycles in urban soils. , 2009, Environment international.

[58]  M. McKinney,et al.  Urbanization as a major cause of biotic homogenization , 2006 .

[59]  Gábor Csárdi,et al.  The igraph software package for complex network research , 2006 .

[60]  R. Pielke Land Use and Climate Change , 2005, Science.

[61]  E. Kalnay,et al.  Impact of urbanization and land-use change on climate , 2003, Nature.

[62]  Mark V. Lomolino,et al.  Ecology’s most general, yet protean 1 pattern: the species‐area relationship , 2000 .

[63]  T. Bongers,et al.  Feeding habits in soil nematode families and genera-an outline for soil ecologists. , 1993, Journal of nematology.

[64]  G. Monette,et al.  Generalized Collinearity Diagnostics , 1992 .