Cu surface segregation of Cu0.03Ni0.97(110) and Cu0.24Ni0.76(110) studied by Ion Scattering Spectroscopy (ISS) and Photoemission of Adsorbed Xe (PAX)

[1]  C. R. Brundle,et al.  The underlayer influence on photoemission and thermal desorption of xenon adsorbed on Ag(111) , 1986 .

[2]  M. Morris,et al.  Crystal-face specificity in surface segregation of CuNi alloys , 1986 .

[3]  Sakurai,et al.  New result in surface segregation of Ni-Cu binary alloys. , 1985, Physical review letters.

[4]  K. Wandelt,et al.  Face specificity of the Xe/Pd bond and the S-resonance model , 1984 .

[5]  K. Wandelt Surface characterization by photoemission of adsorbed xenon (PAX) , 1984 .

[6]  B. Ralph,et al.  A study of the sputtering of copper–nickel using a combination of techniques , 1982 .

[7]  K. Jacobi,et al.  UV photoemission from physisorbed atoms and molecules: Electronic binding energies of valence levels in mono- and multilayers , 1982 .

[8]  R. Bronckers,et al.  Shadowing, focussing and charge-exchange effects in the angular distributions of keV Ne+ and H2O+ ions scattered from Cu{110}: II. The surface geometry of the first two layers , 1981 .

[9]  C. R. Brundle,et al.  Evidence for Crystal-Face Specificity in Surface Segregation of CuNi Alloys , 1981 .

[10]  F. Abraham,et al.  Surface segregation in binary solid solutions: A theoretical and experimental perspective , 1981 .

[11]  K. Wandelt,et al.  Site-selective adsorption of xenon on a stepped Ru(0001) surface , 1981 .

[12]  G. Ertl,et al.  UV-photoelectron spectroscopy from xenon adsorbed on heterogeneous metal surfaces , 1980 .

[13]  D. P. Jackson,et al.  Scattering of Low-Energy Ions from Clean Surfaces: Comparison of Alkali- and Rare-Gas-Ion Scattering , 1980 .

[14]  T. M. Buck,et al.  Low-energy neon-ion scattering and neutralization on first and second layers of a Ni(001) surface , 1979 .

[15]  G. Ertl,et al.  Influence of the Local Surface Structure on the5pPhotoemission of Adsorbed Xenon , 1979 .

[16]  M. Scheffler,et al.  Photoemission from physisorbed xenon: Evidence for lateral interactions , 1978 .

[17]  T. S. King,et al.  Surface composition and surface cluster size distribution of Cu-Ni alloys via a monte carlo method , 1978 .

[18]  H. Brongersma,et al.  Surface segregation in Cu-Ni and Cu-Pt alloys; A comparison of low-energy ion-scattering results with theory , 1978 .

[19]  R. Shimizu,et al.  Thickness and in-depth composition profile of altered layer caused on CuNi alloy surface due to preferential sputtering , 1978 .

[20]  M. Pessa,et al.  High-resolution photoemission study of the surface and bulk electronic structure of copper-nickel alloys , 1978 .

[21]  J. K. Howard,et al.  Auger study of preferred sputtering on binary alloy surfaces , 1976 .

[22]  J. Herbst,et al.  Photoemission for Xe physisorbed on W(100): Evidence for surface crystal- field effects , 1975 .

[23]  G. Ertl,et al.  Soft-X-Ray Appearance Potential Spectra of Ni/Cu Alloys , 1972 .

[24]  M. Ono,et al.  Effect of target temperature on surface composition changes of Cu−Ni alloys during Ar ion bombardment , 1975 .