The Complex Interplay between Antioxidants and ROS in Cancer.

[1]  G. DeNicola,et al.  Nicotinamide nucleotide transhydrogenase regulates mitochondrial metabolism in NSCLC through maintenance of Fe-S protein function , 2020, The Journal of experimental medicine.

[2]  D. Boothman,et al.  Inhibition of TXNRD or SOD1 overcomes NRF2-mediated resistance to β-lapachone , 2020, Redox biology.

[3]  D. Tuveson,et al.  Dynamic ROS Control by TIGAR Regulates the Initiation and Progression of Pancreatic Cancer , 2020, Cancer cell.

[4]  E. Robert McDonald,et al.  Quantitative Proteomics of the Cancer Cell Line Encyclopedia , 2020, Cell.

[5]  Shakeel U. R. Mir,et al.  Scavenging reactive oxygen species selectively inhibits M2 macrophage polarization and their pro-tumorigenic function in part, via Stat3 suppression. , 2019, Free radical biology & medicine.

[6]  Jingyan Han,et al.  Redox regulation via glutaredoxin-1 and protein S-glutathionylation. , 2019, Antioxidants & redox signaling.

[7]  Fan Yang,et al.  GSTZ1 deficiency promotes hepatocellular carcinoma proliferation via activation of the KEAP1/NRF2 pathway , 2019, Journal of Experimental & Clinical Cancer Research.

[8]  Edward W. Tate,et al.  FSP1 is a glutathione-independent ferroptosis suppressor , 2019, Nature.

[9]  J. Olzmann,et al.  The CoQ oxidoreductase FSP1 acts in parallel to GPX4 to inhibit ferroptosis , 2019, Nature.

[10]  K. Vousden,et al.  Cell Clustering Promotes a Metabolic Switch that Supports Metastatic Colonization , 2019, Cell metabolism.

[11]  A. Viale,et al.  The Oncogenic Action of NRF2 Depends on De-glycation by Fructosamine-3-Kinase , 2019, Cell.

[12]  Natalie M. Mishina,et al.  Which Antioxidant System Shapes Intracellular H2O2 Gradients? , 2019, Antioxidants & redox signaling.

[13]  M. Bergo,et al.  BACH1 Stabilization by Antioxidants Stimulates Lung Cancer Metastasis , 2019, Cell.

[14]  B. Ueberheide,et al.  Nrf2 Activation Promotes Lung Cancer Metastasis by Inhibiting the Degradation of Bach1 , 2019, Cell.

[15]  B. Stockwell,et al.  Intercellular interaction dictates cancer cell ferroptosis via Merlin-YAP signalling , 2019, Nature.

[16]  S. Eriksson,et al.  TrxR1, Gsr, and oxidative stress determine hepatocellular carcinoma malignancy , 2019, Proceedings of the National Academy of Sciences.

[17]  John G Doench,et al.  Deubiquitinases Maintain Protein Homeostasis and Survival of Cancer Cells upon Glutathione Depletion. , 2019, Cell metabolism.

[18]  G. G. Galli,et al.  The landscape of cancer cell line metabolism , 2019, Nature Medicine.

[19]  Emanuel J. V. Gonçalves,et al.  Prioritization of cancer therapeutic targets using CRISPR–Cas9 screens , 2019, Nature.

[20]  J. Rabinowitz,et al.  Serine Metabolism Supports Macrophage IL-1β Production. , 2019, Cell metabolism.

[21]  J. Rabinowitz,et al.  NADPH production by the oxidative pentose-phosphate pathway supports folate metabolism , 2019, Nature Metabolism.

[22]  D. Sabatini,et al.  Squalene accumulation in cholesterol auxotrophic lymphomas prevents oxidative cell death , 2019, Nature.

[23]  C. Chelala,et al.  Oxidative Stress in Cells with Extra Centrosomes Drives Non-Cell-Autonomous Invasion , 2018, Developmental cell.

[24]  J. Asara,et al.  Cysteine dioxygenase 1 is a metabolic liability for non-small cell lung cancer , 2018, bioRxiv.

[25]  K. Tenbrock,et al.  Reactive Oxygen Species as Regulators of MDSC-Mediated Immune Suppression , 2018, Front. Immunol..

[26]  Christian M. Metallo,et al.  Transaminase Inhibition by 2-Hydroxyglutarate Impairs Glutamate Biosynthesis and Redox Homeostasis in Glioma , 2018, Cell.

[27]  Hong Jiang,et al.  Nrf2-activated expression of sulfiredoxin contributes to urethane-induced lung tumorigenesis. , 2018, Cancer letters.

[28]  P. Schultz,et al.  A metabolite-derived protein modification integrates glycolysis with KEAP1-NRF2 signaling , 2018, Nature.

[29]  Michael D. Pluth,et al.  Cytochrome c Reduction by H2S Potentiates Sulfide Signaling. , 2018, ACS chemical biology.

[30]  Y. Urano,et al.  N-Acetyl Cysteine Functions as a Fast-Acting Antioxidant by Triggering Intracellular H2S and Sulfane Sulfur Production. , 2018, Cell chemical biology.

[31]  C. Orengo,et al.  Protein CoAlation and antioxidant function of coenzyme A in prokaryotic cells , 2018, The Biochemical journal.

[32]  Matthew E. Ritchie,et al.  Synergy between the KEAP1/NRF2 and PI3K Pathways Drives Non-Small-Cell Lung Cancer with an Altered Immune Microenvironment. , 2018, Cell metabolism.

[33]  Michael D. Brooks,et al.  Targeting Breast Cancer Stem Cell State Equilibrium through Modulation of Redox Signaling. , 2018, Cell metabolism.

[34]  Anton Simeonov,et al.  Irreversible inhibition of cytosolic thioredoxin reductase 1 as a mechanistic basis for anticancer therapy , 2018, Science Translational Medicine.

[35]  M. Karin,et al.  Stress-Activated NRF2-MDM2 Cascade Controls Neoplastic Progression in Pancreas. , 2017, Cancer cell.

[36]  I. DikalovSergey,et al.  Electron Paramagnetic Resonance Measurements of Reactive Oxygen Species by Cyclic Hydroxylamine Spin Probes , 2017 .

[37]  M. Mintun,et al.  Development of a Positron Emission Tomography Radiotracer for Imaging Elevated Levels of Superoxide in Neuroinflammation , 2017, ACS chemical neuroscience.

[38]  D. Sabatini,et al.  NFS1 undergoes positive selection in lung tumours and protects cells from ferroptosis , 2017, Nature.

[39]  Benjamin F. Cravatt,et al.  Chemical Proteomics Identifies Druggable Vulnerabilities in a Genetically Defined Cancer , 2017, Cell.

[40]  B. Stockwell,et al.  Ferroptosis: A Regulated Cell Death Nexus Linking Metabolism, Redox Biology, and Disease , 2017, Cell.

[41]  Francisco J. Sánchez-Rivera,et al.  Keap1 loss promotes Kras-driven lung cancer and results in a dependence on glutaminolysis , 2017, Nature Medicine.

[42]  R. Deberardinis,et al.  Ascorbate regulates haematopoietic stem cell function and leukaemogenesis , 2017, Nature.

[43]  Jill P. Mesirov,et al.  Dependency of a therapy-resistant state of cancer cells on a lipid peroxidase pathway , 2017, Nature.

[44]  Stuart L. Schreiber,et al.  Drug-tolerant persister cancer cells are vulnerable to GPX4 inhibition , 2017, Nature.

[45]  S. Gygi,et al.  The metabolic function of cyclin D3–CDK6 kinase in cancer cell survival , 2017, Nature.

[46]  Christopher D. McFarland,et al.  A quantitative and multiplexed approach to uncover the fitness landscape of tumor suppression in vivo , 2017, Nature Methods.

[47]  T. Mak,et al.  Glutathione Primes T Cell Metabolism for Inflammation , 2017, Immunity.

[48]  M. Duchen,et al.  Protein CoAlation: a redox-regulated protein modification by coenzyme A in mammalian cells , 2017, The Biochemical journal.

[49]  A. Warnatsch,et al.  Reactive Oxygen Species Localization Programs Inflammation to Clear Microbes of Different Size , 2017, Immunity.

[50]  X. Mao,et al.  Glutathione-s-transferase A 4 (GSTA4) suppresses tumor growth and metastasis of human hepatocellular carcinoma by targeting AKT pathway. , 2017, American journal of translational research.

[51]  H. Sies Hydrogen peroxide as a central redox signaling molecule in physiological oxidative stress: Oxidative eustress☆ , 2017, Redox biology.

[52]  J. Zubieta,et al.  Preparation of an 18 F-Labeled Hydrocyanine Dye as a Multimodal Probe for Reactive Oxygen Species. , 2017, Chemistry.

[53]  M. Dore,et al.  Glucose-6-phosphate dehydrogenase deficiency and risk of colorectal cancer in Northern Sardinia , 2016, Medicine.

[54]  Leonard D. Goldstein,et al.  Recurrent Loss of NFE2L2 Exon 2 Is a Mechanism for Nrf2 Pathway Activation in Human Cancers. , 2016, Cell reports.

[55]  Brandon Da Silva,et al.  NRF2 Promotes Tumor Maintenance by Modulating mRNA Translation in Pancreatic Cancer , 2016, Cell.

[56]  T. Akaike,et al.  The chemical biology of protein hydropersulfides: Studies of a possible protective function of biological hydropersulfide generation. , 2016, Free radical biology & medicine.

[57]  Christian M. Metallo,et al.  Reductive carboxylation supports redox homeostasis during anchorage-independent growth , 2016, Nature.

[58]  B. Faubert,et al.  Metabolic Heterogeneity in Human Lung Tumors , 2016, Cell.

[59]  O. Sansom,et al.  Opposing effects of TIGAR- and RAC1-derived ROS on Wnt-driven proliferation in the mouse intestine , 2016, Genes & development.

[60]  Eugenia G. Giannopoulou,et al.  Vitamin C selectively kills KRAS and BRAF mutant colorectal cancer cells by targeting GAPDH , 2015, Science.

[61]  R. Deberardinis,et al.  NRF2 regulates serine biosynthesis in non-small cell lung cancer , 2015, Nature Genetics.

[62]  M. Bergo,et al.  Antioxidants can increase melanoma metastasis in mice , 2015, Science Translational Medicine.

[63]  R. Deberardinis,et al.  Oxidative stress inhibits distant metastasis by human melanoma cells , 2015, Nature.

[64]  R. Banerjee,et al.  Biogenesis of reactive sulfur species for signaling by hydrogen sulfide oxidation pathways. , 2015, Nature chemical biology.

[65]  D. Sabatini,et al.  An Essential Role of the Mitochondrial Electron Transport Chain in Cell Proliferation Is to Enable Aspartate Synthesis , 2015, Cell.

[66]  Elaine Fuchs,et al.  TGF-β Promotes Heterogeneity and Drug Resistance in Squamous Cell Carcinoma , 2015, Cell.

[67]  S. Eriksson,et al.  Dietary methionine can sustain cytosolic redox homeostasis in the mouse liver , 2015, Nature Communications.

[68]  S. Inoue,et al.  Glutathione and thioredoxin antioxidant pathways synergize to drive cancer initiation and progression. , 2015, Cancer cell.

[69]  S. Altekruse,et al.  Loss of SOD3 (EcSOD) Expression Promotes an Aggressive Phenotype in Human Pancreatic Ductal Adenocarcinoma , 2015, Clinical Cancer Research.

[70]  S. Knapp,et al.  Abstract IA09: Copper is required for oncogenic BRAF signaling and tumorigenesis , 2014 .

[71]  D. Wink,et al.  Redox chemistry and chemical biology of H2S, hydropersulfides, and derived species: implications of their possible biological activity and utility. , 2014, Free radical biology & medicine.

[72]  Christopher J. Chang,et al.  A Boronate-Caged [18F]FLT Probe for Hydrogen Peroxide Detection Using Positron Emission Tomography , 2014, Journal of the American Chemical Society.

[73]  Hong Jiang,et al.  Expression of peroxiredoxin 1 and 4 promotes human lung cancer malignancy. , 2014, American journal of cancer research.

[74]  T. Copetti,et al.  A mitochondrial switch promotes tumor metastasis. , 2014, Cell reports.

[75]  T. Shlomi,et al.  Quantitative flux analysis reveals folate-dependent NADPH production , 2014, Nature.

[76]  Adam M. Feist,et al.  Tracing compartmentalized NADPH metabolism in the cytosol and mitochondria of mammalian cells. , 2014, Molecular cell.

[77]  N. Colburn,et al.  Tumor promoter-induced sulfiredoxin is required for mouse skin tumorigenesis. , 2014, Carcinogenesis.

[78]  Lucio Luzzatto,et al.  G6PD deficiency: a classic example of pharmacogenetics with on-going clinical implications , 2014, British journal of haematology.

[79]  E. Larsson,et al.  Antioxidants Accelerate Lung Cancer Progression in Mice , 2014, Science Translational Medicine.

[80]  Matthew E. Welsch,et al.  Regulation of Ferroptotic Cancer Cell Death by GPX4 , 2014, Cell.

[81]  A. Holmgren,et al.  The thioredoxin antioxidant system. , 2014, Free radical biology & medicine.

[82]  Andrea Glasauer,et al.  Targeting SOD1 reduces experimental non–small-cell lung cancer. , 2014, The Journal of clinical investigation.

[83]  E. White,et al.  Autophagy sustains mitochondrial glutamine metabolism and growth of BrafV600E-driven lung tumors. , 2013, Cancer discovery.

[84]  S. Florian,et al.  Deletion of Glutathione Peroxidase-2 Inhibits Azoxymethane-Induced Colon Cancer Development , 2013, PloS one.

[85]  Kwok-Kin Wong,et al.  Transcription factor NRF2 regulates miR-1 and miR-206 to drive tumorigenesis. , 2013, The Journal of clinical investigation.

[86]  Gabriela Kalna,et al.  ROS Production and NF-κB Activation Triggered by RAC1 Facilitate WNT-Driven Intestinal Stem Cell Proliferation and Colorectal Cancer Initiation , 2013, Cell stem cell.

[87]  G. Piazza,et al.  An Undesired Effect of Chemotherapy , 2013, The Journal of Biological Chemistry.

[88]  S. Werner,et al.  Dual role of the antioxidant enzyme peroxiredoxin 6 in skin carcinogenesis. , 2013, Cancer research.

[89]  John M. Asara,et al.  Glutamine supports pancreatic cancer growth through a Kras-regulated metabolic pathway , 2013, Nature.

[90]  Caitlyn W. Barrett,et al.  Tumor suppressor function of the plasma glutathione peroxidase gpx3 in colitis-associated carcinoma. , 2013, Cancer research.

[91]  Karen Blyth,et al.  Serine starvation induces stress and p53 dependent metabolic remodeling in cancer cells , 2012, Nature.

[92]  H. Aburatani,et al.  Nrf2 redirects glucose and glutamine into anabolic pathways in metabolic reprogramming. , 2012, Cancer cell.

[93]  M. R. Lamprecht,et al.  Ferroptosis: An Iron-Dependent Form of Nonapoptotic Cell Death , 2012, Cell.

[94]  G. Sauvageau,et al.  A role for GPx3 in activity of normal and leukemia stem cells. , 2012 .

[95]  P. Chakravarty,et al.  Increased skin papilloma formation in mice lacking glutathione transferase GSTP. , 2011, Cancer research.

[96]  P. Carmeliet,et al.  Renal Cyst Formation in Fh1-Deficient Mice Is Independent of the Hif/Phd Pathway: Roles for Fumarate in KEAP1 Succination and Nrf2 Signaling , 2011, Cancer cell.

[97]  N. Grishin,et al.  Succination of Keap1 and activation of Nrf2-dependent antioxidant pathways in FH-deficient papillary renal cell carcinoma type 2. , 2011, Cancer cell.

[98]  Scott E. Kern,et al.  Oncogene-induced Nrf2 transcription promotes ROS detoxification and tumorigenesis , 2011, Nature.

[99]  Jorming Goh,et al.  Mitochondrial targeted catalase suppresses invasive breast cancer in mice , 2011, BMC Cancer.

[100]  Linda Partridge,et al.  Unraveling the biological roles of reactive oxygen species. , 2011, Cell metabolism.

[101]  G. Bornkamm,et al.  Loss of thioredoxin reductase 1 renders tumors highly susceptible to pharmacologic glutathione deprivation. , 2010, Cancer research.

[102]  Q. Wei,et al.  Evidence that Gsta4 modifies susceptibility to skin tumor development in mice and humans. , 2010, Journal of the National Cancer Institute.

[103]  E. Kremmer,et al.  System xc− and Thioredoxin Reductase 1 Cooperatively Rescue Glutathione Deficiency* , 2010, The Journal of Biological Chemistry.

[104]  W. Wheaton,et al.  Mitochondrial metabolism and ROS generation are essential for Kras-mediated tumorigenicity , 2010, Proceedings of the National Academy of Sciences.

[105]  E. White,et al.  A Noncanonical Mechanism of Nrf2 Activation by Autophagy Deficiency: Direct Interaction between Keap1 and p62 , 2010, Molecular and Cellular Biology.

[106]  Mihee M. Kim,et al.  The selective autophagy substrate p62 activates the stress responsive transcription factor Nrf2 through inactivation of Keap1 , 2010, Nature Cell Biology.

[107]  O. Sansom,et al.  Markedly enhanced colon tumorigenesis in ApcMin mice lacking glutathione S-transferase Pi , 2009, Proceedings of the National Academy of Sciences.

[108]  Yan Li,et al.  Mice deficient in both Mn superoxide dismutase and glutathione peroxidase-1 have increased oxidative damage and a greater incidence of pathology but no reduction in longevity. , 2009, The journals of gerontology. Series A, Biological sciences and medical sciences.

[109]  Hanna Y. Irie,et al.  Antioxidant and oncogene rescue of metabolic defects caused by loss of matrix attachment , 2009, Nature.

[110]  Peng Huang,et al.  Targeting cancer cells by ROS-mediated mechanisms: a radical therapeutic approach? , 2009, Nature Reviews Drug Discovery.

[111]  M. Cha,et al.  Overexpression of peroxiredoxin I and thioredoxin1 in human breast carcinoma , 2009, Journal of experimental & clinical cancer research : CR.

[112]  Elias S. J. Arnér Focus on mammalian thioredoxin reductases--important selenoproteins with versatile functions. , 2009, Biochimica et biophysica acta.

[113]  N. Leslie,et al.  Prdx1 inhibits tumorigenesis via regulating PTEN/AKT activity , 2009, The EMBO journal.

[114]  Irving L. Weissman,et al.  Association of reactive oxygen species levels and radioresistance in cancer stem cells , 2009, Nature.

[115]  M. McMahon,et al.  NRF2 and KEAP1 mutations: permanent activation of an adaptive response in cancer. , 2009, Trends in biochemical sciences.

[116]  Shelly C. Lu Regulation of glutathione synthesis. , 2009, Molecular aspects of medicine.

[117]  J. Crowley,et al.  Effect of selenium and vitamin E on risk of prostate cancer and other cancers: the Selenium and Vitamin E Cancer Prevention Trial (SELECT). , 2009, JAMA.

[118]  A. Townsend,et al.  Role of glutathione S-transferase P1-1 in the cellular detoxification of cisplatin , 2008, Molecular Cancer Therapeutics.

[119]  C. Winterbourn,et al.  Thiol chemistry and specificity in redox signaling. , 2008, Free radical biology & medicine.

[120]  Rui Wang,et al.  Hypermethylation of the Keap1 gene in human lung cancer cell lines and lung cancer tissues. , 2008, Biochemical and biophysical research communications.

[121]  Rogerio Margis,et al.  Glutathione peroxidase family – an evolutionary overview , 2008, The FEBS journal.

[122]  J. Hayashi,et al.  ROS-Generating Mitochondrial DNA Mutations Can Regulate Tumor Cell Metastasis , 2008, Science.

[123]  M. Cappellini,et al.  Glucose-6-phosphate dehydrogenase deficiency , 2008, The Lancet.

[124]  M. Trujillo,et al.  Pre-steady state kinetic characterization of human peroxiredoxin 5: taking advantage of Trp84 fluorescence increase upon oxidation. , 2007, Archives of biochemistry and biophysics.

[125]  Jonathan Pevsner,et al.  HIF-dependent antitumorigenic effect of antioxidants in vivo. , 2007, Cancer cell.

[126]  Jinsong Liu,et al.  Selective killing of oncogenically transformed cells through a ROS-mediated mechanism by beta-phenylethyl isothiocyanate. , 2006, Cancer cell.

[127]  Eyal Gottlieb,et al.  TIGAR, a p53-Inducible Regulator of Glycolysis and Apoptosis , 2006, Cell.

[128]  P. Chumakov,et al.  The antioxidant function of the p53 tumor suppressor , 2005, Nature Medicine.

[129]  D. Albertson,et al.  Rac1b and reactive oxygen species mediate MMP-3-induced EMT and genomic instability , 2005, Nature.

[130]  Michael M Lieber,et al.  Designing the Selenium and Vitamin E Cancer Prevention Trial (SELECT). , 2005, Journal of the National Cancer Institute.

[131]  V. Vasiliou,et al.  Analysis of the glutathione S-transferase (GST) gene family , 2004, Human Genomics.

[132]  C. Epstein,et al.  Life-long reduction in MnSOD activity results in increased DNA damage and higher incidence of cancer but does not accelerate aging. , 2003, Physiological genomics.

[133]  S. Orkin,et al.  Essential role for the peroxiredoxin Prdx1 in erythrocyte antioxidant defence and tumour suppression , 2003, Nature.

[134]  T. Tsuzuki,et al.  Ogg1 knockout-associated lung tumorigenesis and its suppression by Mth1 gene disruption. , 2003, Cancer research.

[135]  Benjamin P Tu,et al.  The FAD- and O(2)-dependent reaction cycle of Ero1-mediated oxidative protein folding in the endoplasmic reticulum. , 2002, Molecular cell.

[136]  D. Albanes,et al.  Selenium, vitamin E, and prostate cancer--ready for prime time? , 1998, Journal of the National Cancer Institute.

[137]  A. Townsend,et al.  Coordinated Action of Glutathione S-Transferases (GSTs) and Multidrug Resistance Protein 1 (MRP1) in Antineoplastic Drug Detoxification , 1998, The Journal of Biological Chemistry.

[138]  G. Paine-Murrieta,et al.  Transfection with human thioredoxin increases cell proliferation and a dominant-negative mutant thioredoxin reverses the transformed phenotype of human breast cancer cells. , 1996, Cancer research.

[139]  J. Imlay,et al.  Superoxide accelerates DNA damage by elevating free-iron levels. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[140]  C. Winterbourn Toxicity of iron and hydrogen peroxide: the Fenton reaction. , 1995, Toxicology letters.

[141]  B. Ames,et al.  Ubiquinol-10 is an effective lipid-soluble antioxidant at physiological concentrations. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[142]  I. Hirono Mechanism of natural and acquired resistance to methyl-bis-(beta-chlorethyl)-amine N-oxide in ascites tumors. , 1961, Gan.

[143]  F. Figge Cosmic Radiation and Cancer. , 1947, Science.

[144]  Jacob D. Jaffe,et al.  Next-generation characterization of the Cancer Cell Line Encyclopedia , 2019, Nature.

[145]  A. Masamune,et al.  Simultaneous K-ras activation and Keap1 deletion cause atrophy of pancreatic parenchyma. , 2018, American journal of physiology. Gastrointestinal and liver physiology.

[146]  Brian J. Smith,et al.  O2⋅- and H2O2-Mediated Disruption of Fe Metabolism Causes the Differential Susceptibility of NSCLC and GBM Cancer Cells to Pharmacological Ascorbate. , 2017, Cancer cell.

[147]  Shelly C. Lu Glutathione synthesis. , 2013, Biochimica et biophysica acta.

[148]  J. Crowley,et al.  Vitamin E and the Risk of Prostate Cancer The Selenium and Vitamin E Cancer Prevention Trial ( SELECT ) , 2011 .

[149]  M. Aitio N-acetylcysteine -- passe-partout or much ado about nothing? , 2006, British journal of clinical pharmacology.

[150]  J. D. Engel,et al.  Keap1 represses nuclear activation of antioxidant responsive elements by Nrf2 through binding to the amino-terminal Neh2 domain. , 1999, Genes & development.

[151]  D. Albanes,et al.  The effect of vitamin E and beta carotene on the incidence of lung cancer and other cancers in male smokers. , 1994, The New England journal of medicine.

[152]  Riley Pa Free Radicals in Biology: Oxidative Stress and the Effects of Ionizing Radiation , 1994 .

[153]  P. Riley Free radicals in biology: oxidative stress and the effects of ionizing radiation. , 1994, International journal of radiation biology.