Near-term quantum-repeater experiments with nitrogen-vacancy centers: Overcoming the limitations of direct transmission

Quantum channels enable the implementation of communication tasks inaccessible to their classical counterparts. The most famous example is the distribution of secret keys. However, in the absence of quantum repeaters the rate at which these tasks can be performed is dictated by the losses in the quantum channel. In practice, channel losses have limited the reach of quantum protocols to short distances. Quantum repeaters have the potential to significantly increase the rates and reach beyond the limits of direct transmission. However, no experimental implementation has overcome the direct transmission threshold. Here, we propose three quantum repeater schemes and assess their ability to generate secret key when implemented on a setup using NV centers in diamond with near-term experimental parameters. We find that one of these schemes surpasses the capacity - the highest secret-key rate achievable with direct transmission - by a factor of seven, establishing it as a prime candidate for the first experimental realization of a quantum repeater.

[1]  C. Ross Found , 1869, The Dental register.

[2]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[3]  E. Purcell,et al.  Resonance Absorption by Nuclear Magnetic Moments in a Solid , 1946 .

[4]  James L. Park The concept of transition in quantum mechanics , 1970 .

[5]  Faraday Discuss , 1985 .

[6]  Ekert,et al.  Quantum cryptography based on Bell's theorem. , 1991, Physical review letters.

[7]  Debbie W. Leung,et al.  Bosonic quantum codes for amplitude damping , 1997 .

[8]  D. Bruß Optimal Eavesdropping in Quantum Cryptography with Six States , 1998, quant-ph/9805019.

[9]  Wolfgang Dür,et al.  Quantum Repeaters: The Role of Imperfect Local Operations in Quantum Communication , 1998 .

[10]  J. Cirac,et al.  Creation of entangled states of distant atoms by interference , 1998, quant-ph/9810013.

[11]  J. Cirac,et al.  Quantum repeaters based on entanglement purification , 1998, quant-ph/9808065.

[12]  H. Bechmann-Pasquinucci,et al.  Incoherent and coherent eavesdropping in the six-state protocol of quantum cryptography , 1998, quant-ph/9807041.

[13]  Colin P. Williams,et al.  Quantum clock synchronization based on shared prior entanglement , 2000, Physical review letters.

[14]  S. Lloyd,et al.  Quantum-enhanced positioning and clock synchronization , 2001, Nature.

[15]  S. R. Jammalamadaka,et al.  Topics in Circular Statistics , 2001 .

[16]  J. Cirac,et al.  Long-distance quantum communication with atomic ensembles and linear optics , 2001, Nature.

[17]  Andrew G. Glen,et al.  APPL , 2001 .

[18]  Prabasaj Paul,et al.  Quantum clock synchronization: Multiparty protocol , 2002 .

[19]  Hoi-Kwong Lo,et al.  Efficient Quantum Key Distribution Scheme and a Proof of Its Unconditional Security , 2004, Journal of Cryptology.

[20]  H. J. Kimble,et al.  Measurement-induced entanglement for excitation stored in remote atomic ensembles , 2005, Nature.

[21]  Pieter Kok,et al.  Efficient high-fidelity quantum computation using matter qubits and linear optics , 2005 .

[22]  T. Spiller,et al.  Quantum computation by communication , 2005, quant-ph/0509202.

[23]  N. Gisin,et al.  Quantum repeaters with photon pair sources and multimode memories. , 2007, Physical review letters.

[24]  C. Monroe,et al.  Quantum interference of photon pairs from two remote trapped atomic ions , 2006, quant-ph/0608047.

[25]  Shun Watanabe,et al.  Key rate of quantum key distribution with hashed two-way classical communication , 2007, 2007 IEEE International Symposium on Information Theory.

[26]  Christoph Simon,et al.  Robust and efficient quantum repeaters with atomic ensembles and linear optics , 2008 .

[27]  Simon C Benjamin,et al.  Measurement-based entanglement under conditions of extreme photon loss. , 2007, Physical review letters.

[28]  H. J. Kimble,et al.  The quantum internet , 2008, Nature.

[29]  Kae Nemoto,et al.  From quantum fusiliers to high-performance networks , 2009 .

[30]  Nicolas Gisin,et al.  Quantum repeaters based on atomic ensembles and linear optics , 2009, 0906.2699.

[31]  Jacob M. Taylor,et al.  Quantum repeater with encoding , 2008, 0809.3629.

[32]  V. Scarani,et al.  The security of practical quantum key distribution , 2008, 0802.4155.

[33]  Tilo Steinmetz,et al.  A fiber Fabry–Perot cavity with high finesse , 2010, 1005.0067.

[34]  Dirk Englund,et al.  Deterministic coupling of a single nitrogen vacancy center to a photonic crystal cavity. , 2010, Nano letters.

[35]  Andreas W. Schell,et al.  Enhancement of the zero phonon line emission from a single nitrogen vacancy center in a nanodiamond via coupling to a photonic crystal cavity , 2010, 1008.3504.

[36]  P. Barclay,et al.  Hybrid Nanocavity Resonant Enhancement of Color Center Emission in Diamond , 2011, 1105.5137.

[37]  W. Pfaff,et al.  Deterministic nanoassembly of a coupled quantum emitter–photonic crystal cavity system , 2010, 1008.4097.

[38]  R. Simon,et al.  Operator-sum representation for bosonic Gaussian channels , 2010, 1012.4266.

[39]  Andrei Faraon,et al.  Resonant enhancement of the zero-phonon emission from a colour centre in a diamond cavity , 2010, 1012.3815.

[40]  B. Hensen,et al.  High-fidelity projective read-out of a solid-state spin quantum register , 2011, Nature.

[41]  Andrei Faraon,et al.  Coupling of nitrogen-vacancy centers to photonic crystal cavities in monocrystalline diamond. , 2012, Physical review letters.

[42]  Kae Nemoto,et al.  Quantum communication without the necessity of quantum memories , 2012, Nature Photonics.

[43]  J. Cirac,et al.  Room-Temperature Quantum Bit Memory Exceeding One Second , 2012, Science.

[44]  M. Curty,et al.  Measurement-device-independent quantum key distribution. , 2011, Physical review letters.

[45]  Christian Hepp,et al.  Visible-to-telecom quantum frequency conversion of light from a single quantum emitter. , 2012, Physical review letters.

[46]  Peter van Loock,et al.  Hybrid quantum repeater with encoding , 2012 .

[47]  D. Hunger,et al.  Scaling laws of the cavity enhancement for nitrogen-vacancy centers in diamond , 2013, 1304.0948.

[48]  M. Markham,et al.  Heralded entanglement between solid-state qubits separated by three metres , 2012, Nature.

[49]  M. Markham,et al.  Coupling of NV centers to photonic crystal nanobeams in diamond. , 2013, Nano letters.

[50]  Neil B. Manson,et al.  The nitrogen-vacancy colour centre in diamond , 2013, 1302.3288.

[51]  Norbert Lütkenhaus,et al.  Squashing model for detectors and applications to quantum key distribution protocols , 2013, ArXiv.

[52]  R Hanson,et al.  Universal control and error correction in multi-qubit spin registers in diamond. , 2013, Nature nanotechnology.

[53]  Norbert Lütkenhaus,et al.  Ultrafast and fault-tolerant quantum communication across long distances. , 2013, Physical review letters.

[54]  Saikat Guha,et al.  The Squashed Entanglement of a Quantum Channel , 2013, IEEE Transactions on Information Theory.

[55]  David O. Bracher,et al.  Deterministic coupling of delta-doped NV centers to a nanobeam photonic crystal cavity , 2014, 1411.0725.

[56]  Simon C. Benjamin,et al.  Freely Scalable Quantum Technologies using Cells of 5-to-50 Qubits with Very Lossy and Noisy Photonic Links , 2014, 1406.0880.

[57]  S. Guha,et al.  Fundamental rate-loss tradeoff for optical quantum key distribution , 2014, Nature Communications.

[58]  R. N. Schouten,et al.  Unconditional quantum teleportation between distant solid-state quantum bits , 2014, Science.

[59]  A. Reiserer,et al.  Towards quantum networks of single spins: analysis of a quantum memory with an optical interface in diamond. , 2015, Faraday discussions.

[60]  C. Simon,et al.  Rate-loss analysis of an efficient quantum repeater architecture , 2014, 1404.7183.

[61]  Christoph Pauly,et al.  Nanoimplantation and Purcell enhancement of single NV centers in photonic crystal cavities in diamond , 2015, 1503.05666.

[62]  A. Trichet,et al.  Tunable cavity coupling of the zero phonon line of a nitrogen-vacancy defect in diamond , 2015, 1506.05161.

[63]  S. Wehner,et al.  Loophole-free Bell inequality violation using electron spins separated by 1.3 kilometres , 2015, Nature.

[64]  Christoph Simon,et al.  Practical quantum repeaters with parametric down-conversion sources , 2015, 1505.03470.

[65]  D. Luong,et al.  Overcoming lossy channel bounds using a single quantum repeater node , 2015, Applied Physics B.

[66]  P. Kwiat,et al.  Design and analysis of communication protocols for quantum repeater networks , 2015, 1505.01536.

[67]  Dirk Englund,et al.  Coherent spin control of a nanocavity-enhanced qubit in diamond , 2014, Nature Communications.

[68]  Barry C. Sanders,et al.  Practical long-distance quantum key distribution through concatenated entanglement swapping with parametric down-conversion sources , 2015, 1501.03317.

[69]  Hoi-Kwong Lo,et al.  All-photonic quantum repeaters , 2013, Nature Communications.

[70]  W. Munro,et al.  Inside Quantum Repeaters , 2015, IEEE Journal of Selected Topics in Quantum Electronics.

[71]  S. Pirandola,et al.  General Benchmarks for Quantum Repeaters , 2015, 1512.04945.

[72]  Kenneth Goodenough,et al.  Assessing the performance of quantum repeaters for all phase-insensitive Gaussian bosonic channels , 2015, 1511.08710.

[73]  Hannes Bernien,et al.  Coherent manipulation, measurement and entanglement of individual solid-state spins using optical fields , 2015, Nature Photonics.

[74]  L. Childress,et al.  A Fabry-Perot Microcavity for Diamond-Based Photonics , 2015, 1508.06588.

[75]  Fariba Hatami,et al.  Efficient extraction of zero-phonon-line photons from single nitrogen-vacancy centers in an integrated GaP-on-diamond platform , 2016, 1606.01826.

[76]  Norbert Kalb,et al.  Robust quantum-network memory using decoherence-protected subspaces of nuclear spins , 2016, 1603.01602.

[77]  E. Togan,et al.  Generation of heralded entanglement between distant hole spins , 2015, Nature Physics.

[78]  S. Wehner,et al.  Loophole-free Bell test using electron spins in diamond: second experiment and additional analysis , 2016, Scientific Reports.

[79]  M. A. Rol,et al.  Repeated quantum error correction on a continuously encoded qubit by real-time feedback , 2015, Nature Communications.

[80]  Gorjan Alagic,et al.  #p , 2019, Quantum information & computation.

[81]  Edmund Clarke,et al.  Phase-tuned entangled state generation between distant spin qubits , 2017, 2017 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC).

[82]  Saikat Guha,et al.  Rate-distance tradeoff and resource costs for all-optical quantum repeaters , 2016, Physical Review A.

[83]  Peter C. Humphreys,et al.  Multiplexed entanglement generation over quantum networks using multi-qubit nodes , 2017, 1702.04885.

[84]  M. Wilde,et al.  Upper bounds on secret-key agreement over lossy thermal bosonic channels , 2017, 1706.04590.

[85]  P. C. Humphreys,et al.  Entanglement distillation between solid-state quantum network nodes , 2017, Science.

[86]  Daniel Riedel,et al.  Deterministic enhancement of coherent photon generation from a nitrogen-vacancy center in ultrapure diamond , 2017, 1703.00815.

[87]  Kenneth Goodenough,et al.  Parameter regimes for a single sequential quantum repeater , 2017, 1705.00043.

[88]  B. Hensen,et al.  Design and low-temperature characterization of a tunable microcavity for diamond-based quantum networks , 2016, 1612.02164.

[89]  J. F. Dynes,et al.  Overcoming the rate–distance limit of quantum key distribution without quantum repeaters , 2018, Nature.

[90]  Mark M. Wilde,et al.  Bounding the energy-constrained quantum and private capacities of phase-insensitive bosonic Gaussian channels , 2017, New Journal of Physics.

[91]  P. Humphreys,et al.  Dephasing mechanisms of diamond-based nuclear-spin memories for quantum networks , 2018, Physical Review A.

[92]  Mark M. Wilde,et al.  Energy-constrained two-way assisted private and quantum capacities of quantum channels , 2018, Physical Review A.

[93]  Stefano Pirandola,et al.  Finite-resource teleportation stretching for continuous-variable systems , 2017, Scientific Reports.

[94]  N. Kalb,et al.  One-second coherence for a single electron spin coupled to a multi-qubit nuclear-spin environment , 2018, Nature Communications.

[95]  Xiongfeng Ma,et al.  Phase-Matching Quantum Key Distribution , 2018, Physical Review X.

[96]  Peter C. Humphreys,et al.  Deterministic delivery of remote entanglement on a quantum network , 2017, Nature.

[97]  Haiying Shen,et al.  TOP , 2019, Encyclopedia of Autism Spectrum Disorders.

[98]  Tsuyoshi Murata,et al.  {m , 1934, ACML.