Introduction to Liquid Crystals

1 What is a liquid crystal 2 1.1 Nematics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.2 Cholesterics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.3 Smectics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.4 Columnar phases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.5 Lyotropic liquid crystals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

[1]  N. Metropolis,et al.  The Monte Carlo method. , 1949 .

[2]  S. Lee The Onsager‐type theory for nematic ordering of finite‐length hard ellipsoids , 1988 .

[3]  G. R. Luckhurst,et al.  Computer simulation studies of anisotropic systems. XXX. The phase behavior and structure of a Gay–Berne mesogen , 1999 .

[4]  Liquid crystal director fluctuations and surface anchoring by molecular simulation , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[5]  J. D. Parsons Nematic ordering in a system of rods , 1979 .

[6]  T. Lubensky,et al.  Principles of condensed matter physics , 1995 .

[7]  Bruce J. Berne,et al.  Gaussian Model Potentials for Molecular Interactions , 1972 .

[8]  O. Lavrentovich,et al.  Cholesteric Liquid Crystals: Defects and Topology , 2001 .

[9]  Coarsening dynamics in nematic liquid crystals , 1992 .

[10]  Ingo Dierking,et al.  Textures of liquid crystals , 2003 .

[11]  O. Lavrentovich,et al.  Defects in Liquid Crystals: Computer Simulations, Theory and Experiments , 2001 .

[12]  Epifanio G. Virga,et al.  Variational Theories for Liquid Crystals , 2018 .

[13]  S. Lee A numerical investigation of nematic ordering based on a simple hard-rod model , 1987 .

[14]  N. D. Mermin,et al.  The topological theory of defects in ordered media , 1979 .

[15]  S. Sarman Flow properties of liquid crystal phases of the Gay-Berne fluid , 1998 .

[16]  J. G. Powles,et al.  The properties of liquid nitrogen: IV. A computer simulation , 1975 .

[17]  S. Hess,et al.  Alignment tensor versus director: Description of defects in nematic liquid crystals. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[18]  M S Soskin,et al.  Nonlinear singular optics , 1998 .

[19]  D. Cleaver,et al.  Computer simulations of the elastic properties of liquid crystals. , 1991, Physical review. A, Atomic, molecular, and optical physics.

[20]  G. R. Luckhurst,et al.  Computer simulation studies of anisotropic systems , 1981 .

[21]  L. Onsager THE EFFECTS OF SHAPE ON THE INTERACTION OF COLLOIDAL PARTICLES , 1949 .

[22]  Andrew P. J. Emerson,et al.  Monte Carlo investigations of a Gay—Berne liquid crystal , 1993 .

[23]  Harry J. Coles,et al.  Laser and Electric Field Induced Birefringence Studies on the Cyanobiphenyl Homologues , 1978 .

[24]  R. Varga,et al.  Numerical Minimization of the Landau-de Gennes Free Energy: Defects in Cylindrical Capillaries , 1991 .

[25]  P. Poulin,et al.  Weak surface energy in nematic dispersions: Saturn ring defects and quadrupolar interactions , 1999 .

[26]  Michael P. Allen,et al.  Simulation of condensed phases using the Distributed Array Processor , 1993 .

[27]  B. Berne Modification of the overlap potential to mimic a linear site-site potential , 1981 .

[28]  J. Stelzer,et al.  Molecular dynamics simulations of a Gay–Berne nematic liquid crystal: Elastic properties from direct correlation functions , 1994 .

[29]  Hakeem,et al.  Phylogenetic classification of the world ’ s tropical forests , 2018 .

[30]  Michael P. Allen,et al.  Molecular simulation and theory of liquid crystal surface anchoring , 1999 .

[31]  Frank Reginald Nunes Nabarro,et al.  Theory of crystal dislocations , 1967 .

[32]  Sohail Murad,et al.  Singularity free algorithm for molecular dynamics simulation of rigid polyatomics , 1977 .

[33]  S. Elston Optics and Nonlinear Optics of Liquid Crystals , 1994 .

[34]  G. R. Luckhurst,et al.  Computer simulation studies of anisotropic systems. XIX. Mesophases formed by the Gay-Berne model mesogen , 1990 .

[35]  J. Banavar,et al.  Computer Simulation of Liquids , 1988 .

[36]  D. Frenkel,et al.  Calculation of liquid-crystal Frank constants by computer simulation. , 1988, Physical review. A, General physics.

[37]  Elastic constants from direct correlation functions in nematic liquid crystals: A computer simulation study , 2001, cond-mat/0107581.

[38]  J. G. Powles,et al.  The properties of liquid nitrogen , 1976 .

[39]  P. Biscari Intrinsically Biaxial Systems: A Variational Theory for Elastomers , 1997 .

[40]  J. Stelzer,et al.  Elastic Constants of Nematic Liquid Crystals From Molecular Dynamics Simulations , 1995 .

[41]  Luis F. Rull,et al.  Liquid crystal phase diagram of the Gay-Berne fluid , 1991 .

[42]  Gubbins,et al.  Dynamics of the Gay-Berne fluid. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[43]  Hess,et al.  Nonequilibrium molecular-dynamics studies on the anisotropic viscosity of perfectly aligned nematic liquid crystals. , 1986, Physical review letters.

[44]  S. TOLANSKY,et al.  Dislocations , 1966, Nature.

[45]  T. Sluckin,et al.  Defect core structure in nematic liquid crystals. , 1987, Physical review letters.

[46]  R. W. Ruhwandl,et al.  MONTE CARLO SIMULATION OF TOPOLOGICAL DEFECTS IN THE NEMATIC LIQUID CRYSTAL MATRIX AROUND A SPHERICAL COLLOID PARTICLE , 1997 .

[47]  G. R. Luckhurst,et al.  Computer simulation studies of anisotropic systems. XXVI. Monte Carlo investigations of a Gay–Berne discotic at constant pressure , 1996 .

[48]  M. P. Allen Molecular simulation and theory of the isotropic–nematic interface , 2000 .

[49]  David Pettey,et al.  TOPOLOGICAL DEFECTS AND INTERACTIONS IN NEMATIC EMULSIONS , 1998 .

[50]  C. P. Mason,et al.  The isotropic–nematic phase transition in uniaxial hard ellipsoid fluids: Coexistence data and the approach to the Onsager limit , 1996 .

[51]  Molecular simulation and theory of a liquid crystalline disclination core , 2002, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[52]  O. Lavrentovich,et al.  Defects in liquid crystals: homotopy theory and experimental studies , 1988 .

[53]  R. Memmer,et al.  COMPUTER SIMULATION OF CHIRAL LIQUID CRYSTAL PHASES. PART 5 : TEMPERATURE DEPENDENCE OF THE PITCH OF A CHOLESTERIC PHASE STUDIED UNDER SELF-DETERMINED BOUNDARY CONDITIONS , 1998 .

[54]  Ericka Stricklin-Parker,et al.  Ann , 2005 .