Proof of a conjectural supercongruence modulo $p^5$

In this paper we prove the supercongruence $$\sum_{n=0}^{(p-1)/2}\frac{6n+1}{256^n}\binom{2n}n^3\equiv p(-1)^{(p-1)/2}+(-1)^{(p-1)/2}\frac{7}{24}p^4B_{p-3}\pmod{p^5}$$ for any prime $p>3$, which was conjectured by Sun in 2019.

[1]  L. Carlitz A Theorem of Glaisher , 1953, Canadian Journal of Mathematics.

[2]  Zhi-Wei Sun Open Conjectures on Congruences , 2009, 0911.5665.

[3]  Frederick Pollock,et al.  On Certain Properties of Prime Numbers. , 1843 .

[4]  Guo-Shuai Mao,et al.  On two supercongruences of truncated hypergeometric series $${}_{4}F_{3}$$ , 2021 .

[5]  Michael E. Hoffman,et al.  QUASI-SYMMETRIC FUNCTIONS AND MOD p MULTIPLE HARMONIC SUMS , 2004, math/0401319.

[6]  Ling Long,et al.  Hypergeometric evaluation identities and supercongruences , 2009, 0912.0197.

[7]  Jianqiang Zhao,et al.  Congruences of alternating multiple harmonic sums , 2009, 0909.0670.

[8]  Richard J. McIntosh On the converse of Wolstenholme's Theorem , 1995 .

[9]  Emma Lehmer,et al.  On Congruences Involving Bernoulli Numbers and the Quotients of Fermat and Wilson , 1938 .

[10]  Guo-Shuai Mao,et al.  On some congruences involving Domb numbers and harmonic numbers , 2019, International Journal of Number Theory.

[12]  F. Morley,et al.  Note on the Congruence 2 4n ≡(-) n (2n)!/(n!) 2 , Where 2n + 1 is a Prime , 1894 .

[13]  Zhi-Wei Sun,et al.  Super congruences and Euler numbers , 2010, 1001.4453.

[14]  Jonathan M. Borwein,et al.  Modular Equations and Approximations to π , 2000 .

[15]  Yungui Chen,et al.  On some congruences of certain binomial sums , 2016 .

[16]  Zhi-Wei Sun,et al.  A new series for $\pi^3$ and related congruences , 2010, 1009.5375.

[17]  C. Hélou,et al.  On Wolstenholme's theorem and its converse , 2008 .

[18]  Zhi-Hong Sun,et al.  Congruences concerning Bernoulli numbers and Bernoulli polynomials , 2000, Discret. Appl. Math..