Hubble Space Telescope NICMOS Imaging Polarimetry of Proto-Planetary Nebulae. II. Macromorphology of the Dust Shell Structure via Polarized Light

The structure of the dusty circumstellar envelopes (CSEs) of proto-planetary nebulae (PPNs) reveals the mass-loss history of these sources and how such histories may differ for elliptical (SOLE) and bipolar (DUPLEX) PPNs. To study the PPN structures via dust-scattered linearly polarized starlight, we have compiled the imaging-polarimetric data for all 18 evolved stars that have been obtained to date with NICMOS on board the Hubble Space Telescope. This alternative imaging technique provides a unique way to probe the distribution of dust grains that scatter light around evolved stars. The new perspective gained from the imaging-polarimetric data has revealed several new aspects to the structures of PPNs. Point symmetry is a prevalent imaging-polarimetric characteristic resulting from the azimuthal density gradient in the CSEs. Among these point-symmetric nebulae, three detailed morphological types can be differentiated by their polarized intensity, Ip, and polarization strength, P. While the azimuthal density gradient is reversed above and below the equatorial plane in optically thicker bipolar nebulae, there is no gradient reversal in optically thinner elliptical nebulae. The equatorial plane of the system defined by the integrated angle of polarization is not necessarily orthogonal to the axis of the apparent bipolar structure in the total intensity data.

[1]  C. Chen,et al.  The Dying Wind around HD 56126, a Post-Asymptotic Giant Branch Carbon Star , 2000, astro-ph/0010038.

[2]  R. Neri,et al.  The Structure and Dynamics of the Proto-Planetary Nebula M1-92 , 1998 .

[3]  Seth M. Swift,et al.  The Nascent Bipolar Nebula Surrounding the Carbon-rich Variable CIT 6: Transition to Axisymmetry , 2002 .

[4]  J. Hora,et al.  Subarcsecond Mid-IR Structure of the Dust Shell around IRAS 22272+5435 , 2001, astro-ph/0104437.

[5]  G. Fazio,et al.  A Mid-infrared Imaging Survey of Proto-Planetary Nebula Candidates , 1998, astro-ph/9812279.

[6]  L. Georgiev,et al.  The Proto-Planetary Nebula M1-92 and the Symbiotic Star MWC 560: Two Evolutionary Phases of the Same Type of Object? , 2005 .

[7]  J. Graham,et al.  Axially Symmetric Superwinds of Proto-Planetary Nebulae with 21 Micron Dust Features , 1997 .

[8]  R. Knacke,et al.  INFRARED POLARIZATION OF IRC +10216. , 1976 .

[9]  Aditya Dayal,et al.  Mid-Infrared (8-21 micron) Imaging of Proto-Planetary Nebulae , 1998 .

[10]  V. Icke Blowing up warped disks , 2003 .

[11]  Subarcsecond Mid-Infrared Imaging of Two Post Asymptotic Giant Branch 21 Micron Sources , 2002 .

[12]  L. Hartmann,et al.  Model scattering envelopes of young stellar objects. II - Infalling envelopes , 1993 .

[13]  M. Sevenster OH-selected AGB and Post-AGB Objects. I. Infrared and Maser Properties , 2002, astro-ph/0202182.

[14]  M. Cohen Circumstellar envelopes and the evolution of carbon stars. , 1979 .

[15]  # 2006. The American Astronomical Society. All rights reserved. Printed in U.S.A. PROPER-MOTION MEASUREMENTS OF THE CYGNUS EGG NEBULA , 2005 .

[16]  S. Kwok,et al.  Hubble Space Telescope Imaging of IRAS 17441–2411: A Case Study of a Bipolar Nebula with a Circumstellar Disk , 1998 .

[17]  J. J. Johnson,et al.  From red giant to planetary nebula - Dust, asymmetry, and polarization , 1991 .

[18]  Bonn,et al.  Bispectrum speckle interferometry of IRC +10216: The dynamic evolution of the innermost circumstellar environment from 1995 to 2001 , 2002, astro-ph/0206309.

[19]  D. Hines,et al.  Pinpointing the Position of the Post-Asymptotic Giant Branch Star at the Core of RAFGL 2688 Using Polarimetric Imaging with NICMOS , 2000, astro-ph/0002079.

[20]  J. Blommaert,et al.  Carbon- and Oxygen-Rich Progenitors of Planetary Nebulae , 1993 .

[21]  W. C. Danchi,et al.  Smoke Signals from IRC +10216. I. Milliarcsecond Proper Motions of the Dust , 2000 .

[22]  D. Allen,et al.  Roberts 22 : a bipolar nebula with OH emission. , 1980 .

[23]  M. Meixner,et al.  Westbrook’s Molecular Gun: Discovery of Near-Infrared Microstructures in AFGL 618 , 2001, astro-ph/0107320.

[24]  B. Hrivnak Optical Spectroscopy of Carbon-rich Proto--Planetary Nebulae , 1995 .

[25]  S. Kwok,et al.  High-Resolution Near-Infrared Imaging and Polarimetry of Four Proto-Planetary Nebulae , 2003, astro-ph/0304400.

[26]  R. Goodrich,et al.  Evidence for the Early Onset of Aspherical Structure in the Planetary Nebula Formation Process: Spectropolarimetry of Post-AGB Stars , 1994 .

[27]  S. Kwok,et al.  Discovery of Two New, Carbon-rich Proto-Planetary Nebulae:IRAS Z02229+6208 and IRAS 07430+1115 , 1999 .

[28]  S. Kwok Proto-Planetary Nebulae , 1993 .

[29]  A. Manchado,et al.  The high-velocity outflow in the proto-planetary nebula Hen 3-1475 , 2003, astro-ph/0303111.

[30]  Collimated Outflow Formation via Binary Stars: Three-Dimensional Simulations of Asymptotic Giant Branch Wind and Disk Wind Interactions , 2003, astro-ph/0307454.

[31]  S. Kwok,et al.  Hubble Space Telescope V-Band Imaging of the Bipolar Proto-Planetary Nebula IRAS 17150–3224 , 1998 .

[32]  Hubble Space Telescope NICMOS Imaging Polarimetry of Proto-Planetary Nebulae: Probing the Dust Shell Structure via Polarized Light , 2004, astro-ph/0411556.

[33]  Bruce Balick,et al.  Shapes and Shaping of Planetary Nebulae , 2002 .

[34]  H. Suto,et al.  High resolution H band imaging polarimetry of IRC +10216. The obscured location of the central star , 2005 .

[35]  A. Zijlstra,et al.  A Highly Collimated Bipolar Outflow in a Proto-planetary Nebula: Hubble Space Telescope Imaging of Hen 401 , 1999 .

[36]  An hst snapshot survey of proto-planetary nebulae candidates: two types of axisymmetric reflection nebulosities , 1999, astro-ph/9908238.

[37]  R. Sahai,et al.  A 2000 Kilometer per Second “Pristine” Post-asymptotic Giant Branch Wind in the Proto-planetary Nebula He 3-1475 , 2001 .

[38]  B. E. Reddy,et al.  An Abundance Analysis of the New Carbon-rich Proto-Planetary Nebula IRAS 06530–0213 , 2003, astro-ph/0303234.

[39]  H. M. Dyck,et al.  Polarimetry of red and infrared stars at 1 to 4 microns. , 1971 .

[40]  K. Justtanont,et al.  The Molecular and Dust Envelope of HD 56126 , 2004, astro-ph/0409057.

[41]  N. Kobayashi,et al.  Imaging and Spatially Resolved Spectroscopy of AFGL 2688 in the Thermal Infrared Region , 2002, astro-ph/0202121.

[42]  I. Iben,et al.  Physical Processes in Red Giants , 1981 .

[43]  G. Neugebauer,et al.  The Unusual Infrared Object IRC+10216 , 1969 .

[44]  Hans Van Winckel,et al.  Post-AGB Stars , 2003 .

[45]  K. M. Merrill,et al.  Studies of the infrared source CRL 2688 , 1975 .

[46]  I. Glass,et al.  A new bipolar nebula in Centaurus , 1979 .

[47]  C. Skinner,et al.  The birth of a planetary nebula around the carbon star IRC+10216 , 1998 .

[48]  S. Kwok,et al.  The Discovery of Two New Bipolar Proto-Planetary Nebulae: IRAS 16594–4656 and IRAS 17245–3951 , 1999 .

[49]  R. Sahai Discovery of a Remarkable Point-Symmetric Proto-Planetary Nebula: Hubble Space Telescope Imaging of IRAS 04296+3429 , 1999 .

[50]  R. Leighton,et al.  Further Observations of Extremely Cool Stars , 1966 .

[51]  M. Livio,et al.  The “Twin Jet” Planetary Nebula M2-9 , 2000, astro-ph/0010241.

[52]  A. Zijlstra,et al.  Unraveling the Structure of Aspherical Proto-Planetary Nebulae. I. Hubble Space Telescope Imaging and Hydroxyl Maser Line Observations of Roberts 22 , 1999 .

[53]  A. Renzini Red Giants as Precursors of Planetary Nebulae , 1981 .

[54]  Tim M. Gledhill,et al.  Axisymmetry in protoplanetary nebulae - II. A near-infrared imaging polarimetric survey , 2005 .

[55]  K. Serkowski,et al.  Polarimetry of 167 Cool Variable Stars: Data , 2001 .

[56]  Rodger I. Thompson,et al.  The Structure of the Prototype Bipolar Protoplanetary Nebula CRL 2688 (Egg Nebula): Broadband, Polarimetric, and H2 Line Imaging with NICMOS on the Hubble Space Telescope , 1998 .

[57]  R. Goodrich,et al.  Multiple Collimated Outflows in the Proto-Planetary Nebula GL 618 , 2002, astro-ph/0208242.

[58]  TWO SUBCLASSES OF PROTO-PLANETARY NEBULAE: MODEL CALCULATIONS , 2002, astro-ph/0202161.

[59]  A. Manchado,et al.  Optical and Infrared Observations of the Bipolar Proto-Planetary Nebula Henize 401 , 1999 .

[60]  B. Zellner,et al.  POLARIZATION OF IRC + 10216. , 1970 .

[61]  S. Kwok,et al.  A study of several F and G supergiant-like stars with infrared excesses as candidates for proto-planetary nebulae , 1989 .

[62]  Paul S. Smith,et al.  Spectropolarimetry and Radiative Transfer Modeling of Three Proto-Planetary Nebulae , 2005 .

[63]  P. Hoof,et al.  Shock emission in the bipolar post-AGB star IRAS 16594-4656 , 2003, astro-ph/0306111.

[64]  G. Schneider,et al.  Analysis of Polarized Light with NICMOS , 2000 .

[65]  R. Goodrich,et al.  Hubble Space Telescope and Ground-based Imaging of the Bipolar Proto-Planetary Nebula M1-92: Evidence for a Collimated Outflow , 1996 .

[66]  N. Calvet,et al.  Studies of bipolar nebulae – V. The general phenomenon , 1978 .

[67]  J. Angel,et al.  Photoelectric polarization maps of two bipolar reflection nebulae. , 1978 .

[68]  I. Iben,et al.  Asymptotic Giant Branch Evolution and Beyond , 1983 .

[69]  Anton M. Koekemoer,et al.  HST Dither Handbook , 2002 .

[70]  A. Kruszewski WAVELENGTH DEPENDENCE OF POLARIZATION. XXIV. INFRARED OBJECTS. , 1971 .

[71]  STScI,et al.  The NICMOS Polarimetric Calibration , 2006, astro-ph/0601541.