Polariton–dark exciton interactions in bistable semiconductor microcavities

We take advantage of the polariton bistability in semiconductor microcavities to estimate the interaction strength between lower exciton-polariton and dark exciton states. We combine the quasiresonant excitation of polaritons and the nominally forbidden two-photon excitation (TPE) of dark excitons in a GaAs microcavity. To this end, we use an ultranarrow linewidth cw laser for the TPE process that allows us to determine the energy of dark excitons with high spectral resolution. Our results evidence a sharp drop in the polariton transmission intensity and width of the hysteresis cycle when the TPE process is resonant with the dark exciton energy, highly compromising the bistability of the polariton condensate. This behavior demonstrates the existence of a small symmetry breaking such as that produced by an effective in-plane magnetic field, allowing us to directly excite the dark reservoir. We numerically reproduce the collapse of the hysteresis cycle with the increasing dark exciton population, treating the evolution of a polariton condensate in a one-mode approximation, coupled to the exciton reservoir via polariton-exciton scattering processes.

[1]  Y. Zhao,et al.  Exciton‐Polaritons and Their Bose–Einstein Condensates in Organic Semiconductor Microcavities , 2021, Advanced materials.

[2]  D. Yakovlev,et al.  Exciton recombination and spin relaxation in strong magnetic fields in ultrathin (In,Al)As/AlAs quantum wells with indirect band gap and type-I band alignment , 2021, Physical Review B.

[3]  D. Myers,et al.  Reanalysis of experimental determinations of polariton-polariton interactions in microcavities , 2021, Physical Review B.

[4]  C. Schneider,et al.  Spatial coherence of room-temperature monolayer WSe2 exciton-polaritons in a trap , 2021, Nature Communications.

[5]  A. Kavokin,et al.  Circular polariton currents with integer and fractional orbital angular momenta , 2021 .

[6]  S. Arakelian,et al.  Magnetic control over the zitterbewegung of exciton–polaritons , 2020, New Journal of Physics.

[7]  C. Schneider,et al.  Formation dynamics of exciton-polariton vortices created by nonresonant annular pumping , 2020, 2006.02200.

[8]  A. Kavokin,et al.  Hybrid optical fiber for light-induced superconductivity , 2019, Scientific Reports.

[9]  M. Steger,et al.  Direct measurement of polariton-polariton interaction strength in the Thomas-Fermi regime of exciton-polariton condensation , 2018, Physical Review B.

[10]  L. Pfeiffer,et al.  Josephson vortices induced by phase twisting a polariton superfluid , 2019, Nature Photonics.

[11]  Q. Xiong,et al.  Observation of exciton polariton condensation in a perovskite lattice at room temperature , 2019, Nature Physics.

[12]  D. Smirnov,et al.  Magnetic field mixing and splitting of bright and dark excitons in monolayer MoSe2 , 2019, 2D Materials.

[13]  I. Carusotto,et al.  Perspectives in superfluidity in resonantly driven polariton fluids , 2019, Physical Review B.

[14]  A. Kavokin,et al.  Nanosecond Spin Coherence Time of Nonradiative Excitons in GaAs/AlGaAs Quantum Wells. , 2019, Physical review letters.

[15]  Mattias Johnsson,et al.  Emergence of quantum correlations from interacting fibre-cavity polaritons , 2019, Nature Materials.

[16]  Christian Schneider,et al.  Towards polariton blockade of confined exciton–polaritons , 2018, Nature Materials.

[17]  A. Kavokin,et al.  Magnetic control of polariton spin transport , 2018, Communications Physics.

[18]  C. Schneider,et al.  Tracking Dark Excitons with Exciton Polaritons in Semiconductor Microcavities. , 2018, Physical review letters.

[19]  E. Ivchenko,et al.  Spin dynamics and magnetic field induced polarization of excitons in ultrathin GaAs/AlAs quantum wells with indirect band gap and type-II band alignment , 2017, 1704.07277.

[20]  Ying Wang,et al.  Magnetic brightening and control of dark excitons in monolayer WSe2. , 2016, Nature nanotechnology.

[21]  A. Knorr,et al.  Excitonic linewidth and coherence lifetime in monolayer transition metal dichalcogenides , 2016, Nature Communications.

[22]  A. Lemaître,et al.  Interaction-induced hopping phase in driven-dissipative coupled photonic microcavities , 2016, Nature Communications.

[23]  S. Brodbeck,et al.  Coherent polariton laser , 2016, 1602.00663.

[24]  Patrick Y. Wen,et al.  Bose-Einstein Condensation of Long-Lifetime Polaritons in Thermal Equilibrium. , 2016, Physical review letters.

[25]  J. Khurgin,et al.  Enhancement of Two-Photon Absorption in Quantum Wells for Extremely Nondegenerate Photon Pairs , 2015, IEEE Journal of Quantum Electronics.

[26]  Tim Byrnes,et al.  Exciton–polariton condensates , 2014, Nature Physics.

[27]  M. Steger,et al.  Slow reflection and two-photon generation of microcavity exciton-polaritons , 2014, 1408.1680.

[28]  Astronomy,et al.  Nonlinear spectroscopy of exciton-polaritons in a GaAs-based microcavity , 2014, 1408.0917.

[29]  F. Nori,et al.  Multistability and condensation of exciton-polaritons below threshold , 2014, 1407.1271.

[30]  A. Kavokin,et al.  Two-photon injection of polaritons in semiconductor microstructures. , 2014, Optics letters.

[31]  M. Amthor,et al.  An electrically pumped polariton laser , 2013, Nature.

[32]  Y. Léger,et al.  Influence of a nonradiative reservoir on polariton spin multistability , 2013 .

[33]  N. Grandjean Polariton lasers , 2012, ISLC 2012 International Semiconductor Laser Conference.

[34]  A. Kavokin,et al.  Polariton-polariton interaction constants in microcavities , 2010 .

[35]  Y. Léger,et al.  Multistability of a coherent spin ensemble in a semiconductor microcavity. , 2010, Nature materials.

[36]  D. Sanvitto,et al.  Effect of interactions on vortices in a nonequilibrium polariton condensate. , 2010, Physical review letters.

[37]  M. S. Skolnick,et al.  Collective fluid dynamics of a polariton condensate in a semiconductor microcavity , 2009, Nature.

[38]  I. Carusotto,et al.  Superfluidity of polaritons in semiconductor microcavities , 2008, 0812.2748.

[39]  Sven Höfling,et al.  Observation of Bogoliubov excitations in exciton-polariton condensates , 2008 .

[40]  J. Baumberg,et al.  Spontaneous polarization buildup in a room-temperature polariton laser. , 2008, Physical review letters.

[41]  R. Zimmermann,et al.  Analysis of the exciton-exciton interaction in semiconductor quantum wells , 2008, 0802.3337.

[42]  K. West,et al.  Bose-Einstein Condensation of Microcavity Polaritons in a Trap , 2007, Science.

[43]  Y. Rubo Half vortices in exciton polariton condensates. , 2007, Physical review letters.

[44]  H. Ouerdane,et al.  Bose glass and superfluid phases of cavity polaritons. , 2007, Physical review letters.

[45]  I. Shelykh,et al.  Polarization multistability of cavity polaritons. , 2006, Physical review letters.

[46]  V. Savona,et al.  Bose–Einstein condensation of exciton polaritons , 2006, Nature.

[47]  D. Ritchie,et al.  Magnetic-field-induced reduction of the exciton polarization splitting in InAs quantum dots , 2006, quant-ph/0601199.

[48]  N. G. Galkin,et al.  Non-linear coupling of polariton and dark exciton states in semiconductor microcavities. , 2005 .

[49]  M. Romanelli,et al.  Optical bistability in semiconductor microcavities in the nondegenerate parametric oscillation regime: analogy with the optical parametric oscillator , 2004, cond-mat/0407553.

[50]  Gregor Weihs,et al.  Condensation of Semiconductor Microcavity Exciton Polaritons , 2002, Science.

[51]  A. L. Ivanov,et al.  Towards Bose–Einstein condensation of excitons in potential traps , 2002, Nature.

[52]  D. Whittaker Classical treatment of parametric processes in a strong-coupling planar microcavity , 2001 .

[53]  Bauser,et al.  Electric and magnetic dipole two-photon absorption in semiconductors. , 1996, Physical review. B, Condensed matter.

[54]  Andrews,et al.  Exchange interaction of excitons in GaAs heterostructures. , 1994, Physical review. B, Condensed matter.

[55]  M. Z. Maialle,et al.  Exciton spin dynamics in quantum wells. , 1993, Physical review. B, Condensed matter.

[56]  Unterrainer,et al.  Two-photon absorption in GaAs/AlGaAs multiple quantum wells. , 1989, Physical review letters.

[57]  Brian S. Wherrett,et al.  Scaling rules for multiphoton interband absorption in semiconductors , 1984 .

[58]  D. Bajoni Polariton lasers. Hybrid light–matter lasers without inversion , 2012 .