Gate resistance modeling of multifin MOS devices

This letter studies the effects of geometrical parameters (fin spacing, fin height and polysilicon thickness) on the gate resistance of multifin MOS devices. An effective lumped resistance model derived from distributed RC network is formulated and verified using a two-dimensional simulator. Based on the model, a design guideline for the fin spacing to minimize the gate resistance and RC delay is provided to design multifin MOS devices for high frequency applications.

[1]  J.G. Fossum,et al.  On the feasibility of nanoscale triple-gate CMOS transistors , 2005, IEEE Transactions on Electron Devices.

[2]  Chenming Hu,et al.  Sub-60-nm quasi-planar FinFETs fabricated using a simplified process , 2001, IEEE Electron Device Letters.

[3]  Yuan Taur,et al.  Fundamentals of Modern VLSI Devices , 1998 .

[4]  N. Collaert,et al.  Analysis of the parasitic S/D resistance in multiple-gate FETs , 2005, IEEE Transactions on Electron Devices.

[5]  Ying Zhang,et al.  Extension and source/drain design for high-performance FinFET devices , 2003 .

[6]  Bin Yu,et al.  FinFET scaling to 10 nm gate length , 2002, Digest. International Electron Devices Meeting,.

[7]  B.C. Paul,et al.  Modeling and optimization of fringe capacitance of nanoscale DGMOS devices , 2005, IEEE Transactions on Electron Devices.

[8]  K. F. Lee,et al.  Impact of distributed gate resistance on the performance of MOS devices , 1994 .

[9]  T. Manku,et al.  Microwave CMOS-device physics and design , 1999, IEEE J. Solid State Circuits.