Two close, too close: sarcoplasmic reticulum-mitochondrial crosstalk and cardiomyocyte fate.

Mitochondria are key organelles in cell life whose dysfunction is associated with a variety of diseases. Their crucial role in intermediary metabolism and energy conversion makes them a preferred target in tissues, such as the heart, where the energetic demands are very high. In the cardiomyocyte, the spatial organization of mitochondria favors their interaction with the sarcoplasmic reticulum, thereby offering a mechanism for Ca(2+)-mediated crosstalk between these 2 organelles. Recently, the molecular basis for this interaction has begun to be unraveled, and we are learning how endoplasmic reticulum-mitochondrial interactions are often exploited by death signals, such as proapoptotic Bcl-2 family members, to amplify the cell death cascade. Here, we review our present understanding of the structural basis and the functional consequences of the close interaction between sarcoplasmic reticulum and mitochondria on cardiomyocyte function and death.

[1]  G. Dorn,et al.  Targeting cyclophilin D and the mitochondrial permeability transition enhances β-cell survival and prevents diabetes in Pdx1 deficiency , 2010, Proceedings of the National Academy of Sciences.

[2]  Peter K. Kim,et al.  Mitochondria Supply Membranes for Autophagosome Biogenesis during Starvation , 2010, Cell.

[3]  P. Walter,et al.  ERMES-mediated ER-mitochondria contacts: molecular hubs for the regulation of mitochondrial biology , 2010, Journal of Cell Science.

[4]  G. Dorn,et al.  Dual autonomous mitochondrial cell death pathways are activated by Nix/BNip3L and induce cardiomyopathy , 2010, Proceedings of the National Academy of Sciences.

[5]  N. Dalton,et al.  Phospholamban Ablation Rescues Sarcoplasmic Reticulum Ca2+ Handling but Exacerbates Cardiac Dysfunction in CaMKII&dgr;C Transgenic Mice , 2010, Circulation research.

[6]  J. Opferman,et al.  GM1-ganglioside accumulation at the mitochondria-associated ER membranes links ER stress to Ca(2+)-dependent mitochondrial apoptosis. , 2009, Molecular cell.

[7]  R. Balaban The role of Ca(2+) signaling in the coordination of mitochondrial ATP production with cardiac work. , 2009, Biochimica et biophysica acta.

[8]  P. Pasdois,et al.  The role of the mitochondrial permeability transition pore in heart disease. , 2009, Biochimica et biophysica acta.

[9]  Aristide C. Chikando,et al.  Mitochondria in cardiomyocyte Ca2+ signaling. , 2009, The international journal of biochemistry & cell biology.

[10]  S. Javadov,et al.  Mitochondrial Permeability Transition Pore Opening as a Promising Therapeutic Target in Cardiac Diseases , 2009, Journal of Pharmacology and Experimental Therapeutics.

[11]  A. Abellán,et al.  Role of sarcoplasmic reticulum in mitochondrial permeability transition and cardiomyocyte death during reperfusion. , 2009, American journal of physiology. Heart and circulatory physiology.

[12]  Peter Walter,et al.  Supporting Online Material for An ER-Mitochondria Tethering Complex Revealed by a Synthetic Biology Screen , 2009 .

[13]  M. Murgia,et al.  Controlling metabolism and cell death: at the heart of mitochondrial calcium signalling. , 2009, Journal of molecular and cellular cardiology.

[14]  J. Molkentin,et al.  Adenine nucleotide translocase-1 induces cardiomyocyte death through upregulation of the pro-apoptotic protein Bax. , 2009, Journal of molecular and cellular cardiology.

[15]  Qinglin Yang,et al.  Peroxisome proliferator-activated receptor delta regulates mitofusin 2 expression in the heart. , 2009, Journal of molecular and cellular cardiology.

[16]  D. Bers,et al.  Mitochondrial free calcium regulation during sarcoplasmic reticulum calcium release in rat cardiac myocytes. , 2009, Journal of molecular and cellular cardiology.

[17]  H. Kawashima,et al.  Local control of mitochondrial membrane potential, permeability transition pore and reactive oxygen species by calcium and calmodulin in rat ventricular myocytes. , 2009, Journal of molecular and cellular cardiology.

[18]  R. Gottlieb,et al.  Autophagy in Ischemic Heart Disease , 2009, Circulation research.

[19]  D. Andrews,et al.  Membrane Binding by tBid Initiates an Ordered Series of Events Culminating in Membrane Permeabilization by Bax , 2008, Cell.

[20]  G. Dorn,et al.  Endoplasmic reticulum-mitochondria crosstalk in NIX-mediated murine cell death. , 2008, The Journal of clinical investigation.

[21]  G. Dorn,et al.  Cardiac reanimation: targeting cardiomyocyte death by BNIP3 and NIX/BNIP3L , 2008, Oncogene.

[22]  L. Scorrano,et al.  Mitofusin 2 tethers endoplasmic reticulum to mitochondria , 2008, Nature.

[23]  G. Hajnóczky,et al.  Physical Coupling Supports the Local Ca2+ Transfer between Sarcoplasmic Reticulum Subdomains and the Mitochondria in Heart Muscle* , 2008, Journal of Biological Chemistry.

[24]  P. Bernardi,et al.  Dephosphorylation by calcineurin regulates translocation of Drp1 to mitochondria , 2008, Proceedings of the National Academy of Sciences.

[25]  P. Bernardi,et al.  Phosphate Is Essential for Inhibition of the Mitochondrial Permeability Transition Pore by Cyclosporin A and by Cyclophilin D Ablation* , 2008, Journal of Biological Chemistry.

[26]  G. McKhann,et al.  Cyclophilin D deficiency attenuates mitochondrial and neuronal perturbation and ameliorates learning and memory in Alzheimer's disease , 2008, Nature Medicine.

[27]  G. Dorn Apoptotic and non-apoptotic programmed cardiomyocyte death in ventricular remodelling. , 2008, Cardiovascular research.

[28]  A. Nairn,et al.  CaM kinase Iα–induced phosphorylation of Drp1 regulates mitochondrial morphology , 2008, The Journal of cell biology.

[29]  H. Sandoval,et al.  Essential role for Nix in autophagic maturation of erythroid cells , 2008, Nature.

[30]  D. Chang,et al.  Dynamics and structure of the Bax-Bak complex responsible for releasing mitochondrial proteins during apoptosis , 2008, Journal of Cell Science.

[31]  H. Sweeney,et al.  Genetic and pharmacologic inhibition of mitochondrial-dependent necrosis attenuates muscular dystrophy , 2008, Nature Medicine.

[32]  M. Mongillo,et al.  Stressed out: the skeletal muscle ryanodine receptor as a target of stress. , 2008, The Journal of clinical investigation.

[33]  G. Dorn,et al.  Nix-Mediated Apoptosis Links Myocardial Fibrosis, Cardiac Remodeling, and Hypertrophy Decompensation , 2008, Circulation.

[34]  J. Opferman,et al.  NIX is required for programmed mitochondrial clearance during reticulocyte maturation , 2007, Proceedings of the National Academy of Sciences.

[35]  S. Strack,et al.  Reversible phosphorylation of Drp1 by cyclic AMP‐dependent protein kinase and calcineurin regulates mitochondrial fission and cell death , 2007, EMBO reports.

[36]  T. Hewett,et al.  Ca2+- and mitochondrial-dependent cardiomyocyte necrosis as a primary mediator of heart failure. , 2007, The Journal of clinical investigation.

[37]  Heping Cheng,et al.  Mitofusin-2 Is a Major Determinant of Oxidative Stress-mediated Heart Muscle Cell Apoptosis* , 2007, Journal of Biological Chemistry.

[38]  C. Blackstone,et al.  Cyclic AMP-dependent Protein Kinase Phosphorylation of Drp1 Regulates Its GTPase Activity and Mitochondrial Morphology* , 2007, Journal of Biological Chemistry.

[39]  A. Dart,et al.  Down-regulation of mitofusin-2 expression in cardiac hypertrophy in vitro and in vivo. , 2007, Life sciences.

[40]  H. McBride,et al.  Bax/Bak promote sumoylation of DRP1 and its stable association with mitochondria during apoptotic cell death , 2007, The Journal of cell biology.

[41]  G. Dorn,et al.  Unrestrained erythroblast development in Nix−/− mice reveals a mechanism for apoptotic modulation of erythropoiesis , 2007, Proceedings of the National Academy of Sciences.

[42]  Toshihiko Oka,et al.  Mitotic Phosphorylation of Dynamin-related GTPase Drp1 Participates in Mitochondrial Fission* , 2007, Journal of Biological Chemistry.

[43]  W. Craigen,et al.  Voltage-dependent anion channels are dispensable for mitochondrial-dependent cell death , 2007, Nature Cell Biology.

[44]  P. Várnai,et al.  Chaperone-mediated coupling of endoplasmic reticulum and mitochondrial Ca2+ channels , 2006, The Journal of cell biology.

[45]  M. Eren,et al.  Calmodulin kinase II inhibition protects against myocardial cell apoptosis in vivo. , 2006, American journal of physiology. Heart and circulatory physiology.

[46]  K. Chien,et al.  Reversal of calcium cycling defects in advanced heart failure toward molecular therapy. , 2006, Journal of the American College of Cardiology.

[47]  D. Bers,et al.  Regulation of Ca2+ and Na+ in Normal and Failing Cardiac Myocytes , 2006, Annals of the New York Academy of Sciences.

[48]  C. Mannella,et al.  Structural and functional features and significance of the physical linkage between ER and mitochondria , 2006, The Journal of cell biology.

[49]  L. Scorrano,et al.  The mitochondrial fission protein hFis1 requires the endoplasmic reticulum gateway to induce apoptosis. , 2006, Molecular biology of the cell.

[50]  D. Fortin,et al.  Altered energy transfer from mitochondria to sarcoplasmic reticulum after cytoarchitectural perturbations in mice hearts , 2006, The Journal of physiology.

[51]  L. Scorrano,et al.  (De)constructing mitochondria: what for? , 2006, Physiology.

[52]  G. Dorn,et al.  Distinct Pathways Regulate Proapoptotic Nix and BNip3 in Cardiac Stress* , 2006, Journal of Biological Chemistry.

[53]  C. Blackstone,et al.  Bax/Bak-Dependent Release of DDP/TIMM8a Promotes Drp1-Mediated Mitochondrial Fission and Mitoptosis during Programmed Cell Death , 2005, Current Biology.

[54]  John W. Adams,et al.  Ca2+ Dysregulation Induces Mitochondrial Depolarization and Apoptosis , 2005, Journal of Biological Chemistry.

[55]  David M. Harris,et al.  Ca2+ Influx–Induced Sarcoplasmic Reticulum Ca2+ Overload Causes Mitochondrial-Dependent Apoptosis in Ventricular Myocytes , 2005, Circulation research.

[56]  R. Sabirov,et al.  Cells die with increased cytosolic ATP during apoptosis: a bioluminescence study with intracellular luciferase , 2005, Cell Death and Differentiation.

[57]  C. Blackstone,et al.  Release of OPA1 during Apoptosis Participates in the Rapid and Complete Release of Cytochrome c and Subsequent Mitochondrial Fragmentation* , 2005, Journal of Biological Chemistry.

[58]  S. Korsmeyer,et al.  Cyclophilin D is a component of mitochondrial permeability transition and mediates neuronal cell death after focal cerebral ischemia. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[59]  B. Kristal,et al.  Comparative kinetic analysis reveals that inducer-specific ion release precedes the mitochondrial permeability transition. , 2005, Biochimica et biophysica acta.

[60]  R. Youle,et al.  Mitochondrial fission in apoptosis , 2005, Nature Reviews Molecular Cell Biology.

[61]  Hiroe Nakazawa,et al.  Propagation of Ca2+ release in cardiac myocytes: role of mitochondria. , 2005, Cell calcium.

[62]  G. Guerrero-Serna,et al.  Inhibition of the mitochondrial calcium uniporter by the oxo‐bridged dinuclear ruthenium amine complex (Ru360) prevents from irreversible injury in postischemic rat heart , 2005, The FEBS journal.

[63]  P. Bernardi,et al.  Properties of the Permeability Transition Pore in Mitochondria Devoid of Cyclophilin D* , 2005, Journal of Biological Chemistry.

[64]  H. McBride,et al.  Endoplasmic reticulum BIK initiates DRP1‐regulated remodelling of mitochondrial cristae during apoptosis , 2005, The EMBO journal.

[65]  Jeffrey Robbins,et al.  Loss of cyclophilin D reveals a critical role for mitochondrial permeability transition in cell death , 2005, Nature.

[66]  Tetsuya Watanabe,et al.  Cyclophilin D-dependent mitochondrial permeability transition regulates some necrotic but not apoptotic cell death , 2005, Nature.

[67]  K. Mani,et al.  Death begets failure in the heart. , 2005, The Journal of clinical investigation.

[68]  L. Wan,et al.  PACS‐2 controls endoplasmic reticulum–mitochondria communication and Bid‐mediated apoptosis , 2005, The EMBO journal.

[69]  R. Jagasia,et al.  DRP-1-mediated mitochondrial fragmentation during EGL-1-induced cell death in C. elegans , 2005, Nature.

[70]  K. Mihara,et al.  Mitofusin 1 and 2 play distinct roles in mitochondrial fusion reactions via GTPase activity , 2004, Journal of Cell Science.

[71]  G. Dorn,et al.  Physiological Growth Synergizes With Pathological Genes in Experimental Cardiomyopathy , 2004, Circulation research.

[72]  J. Marín-García,et al.  Adenoviral SERCA1 overexpression triggers an apoptotic response in cultured neonatal but not in adult rat cardiomyocytes , 2004, Molecular and Cellular Biochemistry.

[73]  L. Scorrano,et al.  OPA1 requires mitofusin 1 to promote mitochondrial fusion. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[74]  R. Youle,et al.  Roles of the mammalian mitochondrial fission and fusion mediators Fis1, Drp1, and Opa1 in apoptosis. , 2004, Molecular biology of the cell.

[75]  R. Rizzuto,et al.  Drp-1-dependent division of the mitochondrial network blocks intraorganellar Ca2+ waves and protects against Ca2+-mediated apoptosis. , 2004, Molecular cell.

[76]  R. Youle,et al.  Endophilin B1 is required for the maintenance of mitochondrial morphology , 2004, The Journal of cell biology.

[77]  Yan-hong Guo,et al.  Dysregulation of HSG triggers vascular proliferative disorders , 2004, Nature Cell Biology.

[78]  J. McCaffery,et al.  Structural Basis of Mitochondrial Tethering by Mitofusin Complexes , 2004, Science.

[79]  E. Olson,et al.  Glycogen synthase kinase-3β mediates convergence of protection signaling to inhibit the mitochondrial permeability transition pore , 2004 .

[80]  M. Pericak-Vance,et al.  Mutations in the mitochondrial GTPase mitofusin 2 cause Charcot-Marie-Tooth neuropathy type 2A , 2004, Nature Genetics.

[81]  H. McBride,et al.  Sumo1 Conjugates Mitochondrial Substrates and Participates in Mitochondrial Fission , 2004, Current Biology.

[82]  R. Youle,et al.  Quantitation of mitochondrial dynamics by photolabeling of individual organelles shows that mitochondrial fusion is blocked during the Bax activation phase of apoptosis , 2004, The Journal of cell biology.

[83]  D. Vance,et al.  Phospholipid biosynthesis in mammalian cells. , 2004, Biochemistry and cell biology = Biochimie et biologie cellulaire.

[84]  Dean P. Jones,et al.  The ADP/ATP translocator is not essential for the mitochondrial permeability transition pore , 2004, Nature.

[85]  S. Korsmeyer,et al.  Cell Death Critical Control Points , 2004, Cell.

[86]  J. Martinou,et al.  hFis1, a Novel Component of the Mammalian Mitochondrial Fission Machinery* , 2003, Journal of Biological Chemistry.

[87]  K. Mihara,et al.  Two mitofusin proteins, mammalian homologues of FZO, with distinct functions are both required for mitochondrial fusion. , 2003, Journal of biochemistry.

[88]  M. McNiven,et al.  The Mitochondrial Protein hFis1 Regulates Mitochondrial Fission in Mammalian Cells through an Interaction with the Dynamin-Like Protein DLP1 , 2003, Molecular and Cellular Biology.

[89]  J. Zierath,et al.  Mitofusin-2 Determines Mitochondrial Network Architecture and Mitochondrial Metabolism , 2003, The Journal of Biological Chemistry.

[90]  Tong Zhang,et al.  The &dgr;C Isoform of CaMKII Is Activated in Cardiac Hypertrophy and Induces Dilated Cardiomyopathy and Heart Failure , 2003, Circulation research.

[91]  G. Shore,et al.  Caspase cleavage product of BAP31 induces mitochondrial fission through endoplasmic reticulum calcium signals, enhancing cytochrome c release to the cytosol , 2003, The Journal of cell biology.

[92]  Andrew N. Carr,et al.  Rescue of cardiomyocyte dysfunction by phospholamban ablation does not prevent ventricular failure in genetic hypertrophy. , 2003, The Journal of clinical investigation.

[93]  Tullio Pozzan,et al.  BAX and BAK Regulation of Endoplasmic Reticulum Ca2+: A Control Point for Apoptosis , 2003, Science.

[94]  E. Kranias,et al.  Ablation of PLB exacerbates ischemic injury to a lesser extent in female than male mice: protective role of NO. , 2003, American journal of physiology. Heart and circulatory physiology.

[95]  G. Dorn,et al.  Mitochondrial death protein Nix is induced in cardiac hypertrophy and triggers apoptotic cardiomyopathy , 2002, Nature Medicine.

[96]  A. Lombès,et al.  Membrane topology and mitochondrial targeting of mitofusins, ubiquitous mammalian homologs of the transmembrane GTPase Fzo. , 2002, Journal of cell science.

[97]  J. Roth,et al.  Bax and Bak Promote Apoptosis by Modulating Endoplasmic Reticular and Mitochondrial Ca2+ Stores* , 2002, The Journal of Biological Chemistry.

[98]  S. Frank,et al.  The role of dynamin-related protein 1, a mediator of mitochondrial fission, in apoptosis. , 2001, Developmental cell.

[99]  A. M. van der Bliek,et al.  Dynamin-related protein Drp1 is required for mitochondrial division in mammalian cells. , 2001, Molecular biology of the cell.

[100]  S. Korsmeyer,et al.  Proapoptotic BAX and BAK: A Requisite Gateway to Mitochondrial Dysfunction and Death , 2001, Science.

[101]  Guido Kroemer,et al.  Control of Mitochondrial Membrane Permeabilization by Adenine Nucleotide Translocator Interacting with HIV-1 Viral Protein R and Bcl-2 , 2001, The Journal of experimental medicine.

[102]  S. Korsmeyer,et al.  Pro-apoptotic cascade activates BID, which oligomerizes BAK or BAX into pores that result in the release of cytochrome c , 2000, Cell Death and Differentiation.

[103]  T. Pozzan,et al.  Mitochondria as all‐round players of the calcium game , 2000, The Journal of physiology.

[104]  J. Shaw,et al.  Dnm1p Gtpase-Mediated Mitochondrial Fission Is a Multi-Step Process Requiring the Novel Integral Membrane Component Fis1p , 2000, The Journal of cell biology.

[105]  M. Hengartner The biochemistry of apoptosis , 2000, Nature.

[106]  Mark A Sussman,et al.  Re-evaluating sarcoplasmic reticulum function in heart failure , 2000, Nature Medicine.

[107]  T G Frey,et al.  The internal structure of mitochondria. , 2000, Trends in biochemical sciences.

[108]  D. Andrews,et al.  Bcl-2 and Bax regulate the channel activity of the mitochondrial adenine nucleotide translocator , 2000, Oncogene.

[109]  G. Rutter,et al.  Regulation of mitochondrial ATP synthesis by calcium: evidence for a long-term metabolic priming. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[110]  A. M. van der Bliek,et al.  C. elegans dynamin-related protein DRP-1 controls severing of the mitochondrial outer membrane. , 1999, Molecular cell.

[111]  D. Kass,et al.  Dilated cardiomyopathy in homozygous myosin-binding protein-C mutant mice. , 1999, The Journal of clinical investigation.

[112]  M. Martone,et al.  Chronic Phospholamban–Sarcoplasmic Reticulum Calcium ATPase Interaction Is the Critical Calcium Cycling Defect in Dilated Cardiomyopathy , 1999, Cell.

[113]  A. Podtelejnikov,et al.  Endophilin I mediates synaptic vesicle formation by transfer of arachidonate to lysophosphatidic acid , 1999, Nature.

[114]  J. Shaw,et al.  The dynamin-related GTPase Dnm1 regulates mitochondrial fission in yeast , 1999, Nature Cell Biology.

[115]  J. Martinou,et al.  The Release of Cytochrome c from Mitochondria during Apoptosis of NGF-deprived Sympathetic Neurons Is a Reversible Event , 1999, The Journal of cell biology.

[116]  John W. Adams,et al.  Enhanced Galphaq signaling: a common pathway mediates cardiac hypertrophy and apoptotic heart failure. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[117]  Lawrence M. Lifshitz,et al.  Close contacts with the endoplasmic reticulum as determinants of mitochondrial Ca2+ responses. , 1998, Science.

[118]  G. Kroemer,et al.  The Permeability Transition Pore Complex: A Target for Apoptosis Regulation by Caspases and Bcl-2–related Proteins , 1998, The Journal of experimental medicine.

[119]  S. Srinivasula,et al.  Cytochrome c and dATP-Dependent Formation of Apaf-1/Caspase-9 Complex Initiates an Apoptotic Protease Cascade , 1997, Cell.

[120]  G. Dorn,et al.  Transgenic Gαq overexpression induces cardiac contractile failure in mice , 1997 .

[121]  Y. Tsujimoto,et al.  Intracellular ATP levels determine cell death fate by apoptosis or necrosis. , 1997, Cancer research.

[122]  P. Nicotera,et al.  Intracellular Adenosine Triphosphate (ATP) Concentration: A Switch in the Decision Between Apoptosis and Necrosis , 1997, The Journal of experimental medicine.

[123]  W. Welte,et al.  Complexes between kinases, mitochondrial porin and adenylate translocator in rat brain resemble the permeability transition pore , 1996, FEBS letters.

[124]  György Hajnóczky,et al.  Decoding of cytosolic calcium oscillations in the mitochondria , 1995, Cell.

[125]  J. Bereiter-Hahn,et al.  Dynamics of mitochondria in living cells: Shape changes, dislocations, fusion, and fission of mitochondria , 1994, Microscopy research and technique.

[126]  V. Skulachev,et al.  Ion permeability induced in artificial membranes by the ATP/ADP antiporter , 1994, FEBS letters.

[127]  T. Pozzan,et al.  Microdomains with high Ca2+ close to IP3-sensitive channels that are sensed by neighboring mitochondria. , 1993, Science.

[128]  M. Zoratti,et al.  The mitochondrial permeability transition pore may comprise VDAC molecules , 1993, FEBS letters.

[129]  Tullio Pozzan,et al.  Rapid changes of mitochondrial Ca2+ revealed by specifically targeted recombinant aequorin , 1992, Nature.

[130]  A. Halestrap,et al.  Inhibition of Ca2(+)-induced large-amplitude swelling of liver and heart mitochondria by cyclosporin is probably caused by the inhibitor binding to mitochondrial-matrix peptidyl-prolyl cis-trans isomerase and preventing it interacting with the adenine nucleotide translocase. , 1990, The Biochemical journal.

[131]  M. Crompton,et al.  A heart mitochondrial Ca2(+)-dependent pore of possible relevance to re-perfusion-induced injury. Evidence that ADP facilitates pore interconversion between the closed and open states. , 1990, The Biochemical journal.

[132]  R. Haworth,et al.  The Ca2+-induced membrane transition in mitochondria. II. Nature of the Ca2+ trigger site. , 1979, Archives of biochemistry and biophysics.

[133]  B. Rothermel,et al.  Autophagy in load-induced heart disease. , 2008, Circulation research.

[134]  A. Strasser,et al.  The BCL-2 protein family: opposing activities that mediate cell death , 2008, Nature Reviews Molecular Cell Biology.

[135]  Tullio Pozzan,et al.  Microdomains of intracellular Ca2+: molecular determinants and functional consequences. , 2006, Physiological reviews.

[136]  R. Rizzuto Microdomains of Intracellular Ca : Molecular Determinants and Functional Consequences , 2005 .

[137]  E. Olson,et al.  Glycogen synthase kinase-3beta mediates convergence of protection signaling to inhibit the mitochondrial permeability transition pore. , 2004, The Journal of clinical investigation.

[138]  Luca Scorrano,et al.  A distinct pathway remodels mitochondrial cristae and mobilizes cytochrome c during apoptosis. , 2002, Developmental cell.

[139]  G. Dorn,et al.  Transgenic Galphaq overexpression induces cardiac contractile failure in mice. , 1997, Proceedings of the National Academy of Sciences of the United States of America.