Double Nearest-Neighbor Error Correcting Codes on Hexagonal Signal Constellation

A new class of double nearest-neighbor errorcorrecting codes on hexagonal constellation in the two dimensional space is presented. The proposed code is a linear [n,n−3] code over GF(p) where p = 6n+1 is a prime. We show that the proposed code corrects any generalized Lee error with at most weight 2.

[1]  Hristo Kostadinov,et al.  Soft Decoding of Integer Codes and Their Application to Coded Modulation , 2010, IEICE Trans. Fundam. Electron. Commun. Comput. Sci..

[2]  Elwyn R. Berlekamp Negacyclic codes for the Lee metric , 1966 .

[3]  S. Nishimura,et al.  A generalization of the Lee distance and error correcting codes , 2008, Discret. Appl. Math..

[4]  K. Huber,et al.  Codes Over Gaussian Integers , 1993, Proceedings. IEEE International Symposium on Information Theory.

[5]  K. Huber,et al.  Codes over Eisenstein-Jacobi integers , 1994 .

[6]  Hiroyoshi Morita Nearest-neighbor error correcting codes on a hexagonal signal constellation , 2015, 2015 IEEE International Symposium on Information Theory (ISIT).