An approach to melodic segmentation and classification based on filtering with the Haar-wavelet

Abstract We present a novel method of classification and segmentation of melodies in symbolic representation. The method is based on filtering pitch as a signal over time with the Haar wavelet, and we evaluate it on two tasks. The filtered signal corresponds to a single-scale signal ws from the continuous Haar wavelet transform. The melodies are first segmented using local maxima or zero-crossings of ws. The segments of ws are then classified using the k nearest neighbour algorithm with Euclidian and city-block distances. This method proves more effective than using unfiltered pitch signals and Gestalt-based segmentation when used to recognize the parent works of segments from Bach’s Two-Part Inventions (BWV 772–786). When used to classify 360 Dutch folk tunes into 26 tune families, the performance of the method is comparable to the use of pitch signals, but not as good as that of string-matching methods based on multiple features.

[1]  Killiam Kurt Dobson,et al.  A low complexity wavelet based audio compression method , 1996, Proceedings of Data Compression Conference - DCC '96.

[2]  Steven D. Brown,et al.  Selecting wavelet transform scales for multivariate classification , 2007 .

[3]  Emilios Cambouropoulos,et al.  The Local Boundary Detection Model (LBDM) and its Application in the Study of Expressive Timing , 2001, ICMC.

[4]  M. Thaut,et al.  The Oxford handbook of music psychology , 2011 .

[5]  M.B.G. van Dijk,et al.  Onder de Groene Linde , 1992 .

[6]  L. P. Grijp,et al.  Onder de groene linde. 163 verhalende liederen uit de mondelinge overlevering, opgenomen door Ate Doornbosch e.a./Under the green linden. 163 Dutch Ballads from the oral tradition recorded by Ate Doornbosch a.o. (Boek + 9 cd's + 1 dvd) , 2008 .

[7]  Bernard Manderick,et al.  String Methods for Folk Tune Genre Classification , 2012, ISMIR.

[8]  A. Haar Zur Theorie der orthogonalen Funktionensysteme , 1910 .

[9]  M. Schmuckler Testing Models of Melodic Contour Similarity , 1999 .

[10]  Emilios Cambouropoulos,et al.  Musical Rhythm: A Formal Model for Determining Local Boundaries, Accents and Metre in a Melodic Surface , 1996, Joint International Conference on Cognitive and Systematic Musicology.

[11]  M. Farge Wavelet Transforms and their Applications to Turbulence , 1992 .

[12]  Heinrich Schenker,et al.  Der freie Satz , 1935 .

[13]  Allen Forte,et al.  Introduction to Schenkerian Analysis , 1984 .

[14]  A. Aldroubi,et al.  Wavelets in Medicine and Biology , 1997 .

[15]  Woojay Jeon,et al.  Efficient search of music pitch contours using wavelet transforms and segmented dynamic time warping , 2011, 2011 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[16]  Bernard Manderick,et al.  Global Feature Versus Event Models for Folk Song Classification , 2009, ISMIR.

[17]  Laurence Dreyfus,et al.  Bach and the Patterns of Invention , 2004 .

[18]  Mark S. Nixon,et al.  Feature extraction & image processing for computer vision , 2012 .

[19]  George Tzanetakis,et al.  Audio Analysis using the Discrete Wavelet Transform , 2001 .

[20]  E. Laufer Heinrich Schenker, Free Composition (Der Freie Satz): Vol. III of New Musical Theories and Fantasies. Translated and edited by Ernst Oster. New York: Longman, Inc., in cooperation with the American Musicological Society, 1979 , 1981 .

[21]  Eliathamby Ambikairajah,et al.  Wavelet packet based audio coding using temporal masking , 2003, Fourth International Conference on Information, Communications and Signal Processing, 2003 and the Fourth Pacific Rim Conference on Multimedia. Proceedings of the 2003 Joint.

[22]  José Manuel Iñesta Quereda,et al.  Statistical description models for melody analysis and characterization , 2004, ICMC.

[23]  David Meredith,et al.  The ps13 pitch spelling algorithm , 2006 .

[24]  Robert Dix Lincoln,et al.  Structure and Style: The Study and Analysis of Musical Forms@@@Anthology of Musical Forms , 1963 .

[25]  Qi Tian,et al.  Gabor wavelet associative memory for face recognition , 2005, IEEE Trans. Neural Networks.

[26]  Maxim J. Goldberg,et al.  Removing noise from music using local trigonometric bases and wavelet packets , 1994 .

[27]  Leah H. Jamieson,et al.  High-quality audio compression using an adaptive wavelet packet decomposition and psychoacoustic modeling , 1998, IEEE Trans. Signal Process..

[28]  Marc Leman,et al.  Music, Gestalt, and Computing - Studies in Cognitive and Systematic Musicology , 1997 .

[29]  R. Schiffer,et al.  INTRODUCTION , 1988, Neurology.

[30]  Stéphane Mallat,et al.  Audio Denoising by Time-Frequency Block Thresholding , 2008, IEEE Transactions on Signal Processing.

[31]  Jeffrey M. Zacks,et al.  Segmentation in the perception and memory of events , 2008, Trends in Cognitive Sciences.

[32]  Jean-Pierre Antoine Wavelet analysis: a new tool in physics , 1998 .

[33]  R. Zatorre,et al.  The neurobiological basis of musical expectations , 2008 .

[34]  Ingrid Daubechies,et al.  Where do wavelets come from? A personal point of view , 1996, Proc. IEEE.

[35]  Alberto Pinto Indexing melodic sequences via Wavelet transform , 2009, 2009 IEEE International Conference on Multimedia and Expo.

[36]  Anil C. Kokaram,et al.  A Wavelet Packet representation of audio signals for music genre classification using different ensemble and feature selection techniques , 2003, MIR '03.

[37]  L. Polansky,et al.  Temporal Gestalt Perception in Music , 1980 .

[38]  C. Stevens,et al.  Sweet Anticipation: Music and the Psychology of Expectation, by David Huron . Cambridge, Massachusetts: MIT Press, 2006 , 2007 .

[39]  Woojay Jeon,et al.  An Efficient Signal-Matching Approach to Melody Indexing and Search Using Continuous Pitch Contours and Wavelets , 2009, ISMIR.

[40]  Henkjan Honing,et al.  Time–frequency representation of musical rhythm by continuous wavelets , 2008 .

[41]  Abhijit Karmakar,et al.  Synthesis of an Optimal Wavelet Based on Auditory Perception Criterion , 2011, EURASIP J. Adv. Signal Process..

[42]  C. R. Deboor,et al.  A practical guide to splines , 1978 .

[43]  Petri Toiviainen,et al.  MIDI toolbox : MATLAB tools for music research , 2004 .

[44]  J. Gallant,et al.  Identifying natural images from human brain activity , 2008, Nature.

[45]  Emiru Tsunoo,et al.  Musical Bass-Line Pattern Clustering and Its Application to Audio Genre Classification , 2009, ISMIR.

[46]  P. van Kranenburg,et al.  A Computational Approach to Content-Based Retrieval of Folk Song Melodies , 2010 .

[47]  Stéphane Mallat,et al.  A Wavelet Tour of Signal Processing - The Sparse Way, 3rd Edition , 2008 .

[48]  R. Jackendoff,et al.  A Generative Theory of Tonal Music , 1985 .

[49]  Joakim Andén,et al.  Multiscale Scattering for Audio Classification , 2011, ISMIR.

[50]  Bob L. Sturm,et al.  Proceedings of the International Computer Music Conference , 2011 .

[51]  Wen Gao,et al.  Are Gabor phases really useless for face recognition? , 2009, Pattern Analysis and Applications.

[52]  C. Torrence,et al.  A Practical Guide to Wavelet Analysis. , 1998 .

[53]  Matthew Brown,et al.  Explaining Tonality: Schenkerian Theory and Beyond , 2005 .

[54]  J. Berg,et al.  Wavelets in Physics , 2004 .

[55]  F. Wiering,et al.  A Comparison between Global and Local Features for Computational Classification of Folk Song Melodies , 2013 .

[56]  Daniel J. Levitin,et al.  This is your brain on music : the science of a human obsession , 2006 .

[57]  Ian Knopke,et al.  A System for Identifying Common Melodic Phrases in the Masses of Palestrina , 2009 .