Advantages using the thermal infrared (TIR) to detect and quantify semi-arid soil properties

Abstract Monitoring soil surface dynamics in semi-arid agricultural landscapes becomes increasingly important due to the vulnerability of these ecosystems to desertification processes. Observations using remote sensing via the traditionally used visible-near infrared (VNIR) and shortwave infrared (SWIR) wavelength regions can be limited due to the special characteristics of such soils (e.g. rich in quartz, poor in clay minerals, coarse textured, and grain coatings). In this laboratory-based work we demonstrate the capabilities of the thermal infrared between 8 and 14 μm (longwave infrared) to detect and quantify small ranges of the soil properties sand-, clay, and soil organic carbon (SOC) content, as they appear in the semi-arid agricultural landscapes of the Mullewa region in Western Australia. All of the three soil properties could be predicted using the longwave infrared (LWIR) spectra with higher accuracy and precision than from the VNIR-SWIR wavelength region. The study revealed the complex relationships between the soil properties and the VNIR-SWIR soil spectra, which were caused by the spectral influence of the soils' grain coatings (based on iron and clay minerals). These difficulties could be handled more appropriately by the prediction models based on the LWIR soil spectra. Our results indicate that in order to quantitatively monitor farming areas for such erosion-related soil properties; remote sensing using the LWIR wavelength region would produce better estimates than using the wavelength ranges in the VNIR-SWIR.

[1]  Freek D. van der Meer,et al.  Thermal infrared spectroscopy and partial least squares regression to determine mineral modes of granitoid rocks , 2012 .

[2]  E. Ben-Dor The reflectance spectra of organic matter in the visible near-infrared and short wave infrared region (400-2500 nm) during a controlled decomposition process , 1997 .

[3]  Lênio Soares Galvão,et al.  Detection of sandy soil surfaces using ASTER‐derived reflectance, emissivity and elevation data: potential for the identification of land degradation , 2008 .

[4]  L. Janik,et al.  Quantification of carbon derived from lignite in soils using mid-infrared spectroscopy and partial least squares , 2001 .

[5]  R. V. Rossel,et al.  Using data mining to model and interpret soil diffuse reflectance spectra. , 2010 .

[6]  J. Labed,et al.  Spectral properties of land surfaces in the thermal infrared: 1. Laboratory measurements of absolute spectral emissivity signatures , 1990 .

[7]  Thomas Cudahy,et al.  Mapping surface mineralogy and scattering behavior using backscattered reflectance from a hyperspectral midinfrared airborne CO 2 laser system (MIRACO2LAS) , 1999, IEEE Trans. Geosci. Remote. Sens..

[8]  S. Hook,et al.  The ASTER spectral library version 2.0 , 2009 .

[9]  G. F. Epema,et al.  Remote sensing of salt affected soils , 1993 .

[10]  John W. Salisbury,et al.  Usefulness of weak bands in midinfrared remote sensing of particulate planetary surfaces , 1987 .

[11]  T. L. Lyon,et al.  The Nature and Properties of Soils , 1930 .

[12]  F. Meer,et al.  Thermal infrared spectroscopy on feldspars - successes, limitations and their implications for remote sensing. , 2010 .

[13]  Simon J. Hook,et al.  The micro Fourier Transform Interferometer (μFTIR) : A new field spectrometer for acquisition of infrared data of natural surfaces , 1996 .

[14]  Yanjun Shen,et al.  Development of topsoil grain size index for monitoring desertification in arid land using remote sensing , 2006 .

[15]  Thomas Cudahy,et al.  METHOD TO REDUCE GREEN AND DRY VEGETATION EFFECTS FOR SOIL MAPPING USING HYPERSPECTRAL DATA , 2010 .

[16]  Carl Salvaggio,et al.  Comparison of field- and laboratory-collected midwave and longwave infrared emissivity spectra/data reduction techniques , 2001, SPIE Defense + Commercial Sensing.

[17]  E. R. Stoner,et al.  REFLECTANCE PROPERTIES OF SOILS , 1986 .

[18]  Eyal Ben-Dor,et al.  Mineral Classification of Land Surface Using Multispectral LWIR and Hyperspectral SWIR Remote-Sensing Data. A Case Study over the Sokolov Lignite Open-Pit Mines, the Czech Republic , 2014, Remote. Sens..

[19]  Cristian Mattar,et al.  Soil emissivity and reflectance spectra measurements. , 2009, Applied optics.

[20]  M. Gerzabek,et al.  Comparison of the composition of forest soil litter derived from three different sites at various decompositional stages using FTIR spectroscopy , 1998 .

[21]  James K. Crowley,et al.  Spectral reflectance and emissivity features of broad leaf plants: Prospects for remote sensing in the thermal infrared (8.0–14.0 μm) , 2007 .

[22]  John W. Salisbury,et al.  Infrared (2.1-25 μm) spectra of minerals , 1991 .

[23]  R. Isbell Australian Soil Classification , 1996 .

[24]  E. Ben-Dor,et al.  Laboratory, field and airborne spectroscopy for monitoring organic carbon content in agricultural soils , 2007 .

[25]  Freek D. van der Meer,et al.  Spectral characteristics of clay minerals in the 2.5-14 μm wavelength region , 2011 .

[26]  J. Hair Multivariate data analysis , 1972 .

[27]  J. Sobrino,et al.  A method to estimate soil moisture from Airborne Hyperspectral Scanner (AHS) and ASTER data: Application to SEN2FLEX and SEN3EXP campaigns , 2012 .

[28]  Harald van der Werff,et al.  Thermal Infrared Spectrometer for Earth Science Remote Sensing Applications—Instrument Modifications and Measurement Procedures , 2011, Sensors.

[29]  Thomas Cudahy,et al.  Investigations into soil composition and texture using infrared spectroscopy (2-14 m) , 2012 .

[30]  J. Demattê,et al.  Spectral Reflectance Methodology in Comparison to Traditional Soil Analysis , 2006 .

[31]  J. Salisbury,et al.  Thermal‐infrared remote sensing and Kirchhoff's law: 1. Laboratory measurements , 1993 .

[32]  S. Wold,et al.  PLS-regression: a basic tool of chemometrics , 2001 .

[33]  Edwin M. Winter,et al.  Infrared Measurements of Pristine and Disturbed Soils 1. Spectral Contrast Differences between Field and Laboratory Data , 1998 .

[34]  J. Salisbury,et al.  The role of volume scattering in reducing spectral contrast of reststrahlen bands in spectra of powdered minerals , 1992 .

[35]  J. Salisbury,et al.  Emissivity of terrestrial materials in the 3–5 μm atmospheric window☆ , 1992 .

[36]  L. Rogers Geraldton region land resources survey , 1996 .

[37]  E. Ben-Dor,et al.  Quantitative mapping of arid alluvial fan surfaces using field spectrometer and hyperspectral remote sensing , 2006 .

[38]  W. Amelung,et al.  Rapid assessment of black carbon in soil organic matter using mid-infrared spectroscopy , 2008 .

[39]  G. McCarty,et al.  Mid-Infrared and Near-Infrared Diffuse Reflectance Spectroscopy for Soil Carbon Measurement , 2002 .

[40]  F. E. Nicodemus Directional Reflectance and Emissivity of an Opaque Surface , 1965 .

[41]  Thomas Cudahy,et al.  Airborne and laboratory remote sensing applications of the CSIRO CO2 laser spectrometer MIRACO2LAS , 1997, Defense, Security, and Sensing.

[42]  John W. Salisbury,et al.  Thermal infrared directional emissivity of powdered quartz , 1995 .

[43]  John W. Salisbury,et al.  Thermal infrared (2.5–13.5 μm) spectroscopic remote sensing of igneous rock types on particulate planetary surfaces , 1989 .

[44]  S. J. Sutley,et al.  USGS Digital Spectral Library splib06a , 2007 .

[45]  Thomas Cudahy,et al.  Applicability of the Thermal Infrared Spectral Region for the Prediction of Soil Properties Across Semi-Arid Agricultural Landscapes , 2012, Remote. Sens..

[46]  A. Skidmore,et al.  Identifying plant species using mid-wave infrared (2.5–6 μm) and thermal infrared (8–14 μm) emissivity spectra , 2012 .

[47]  Cheng-Wen Chang,et al.  NEAR-INFRARED REFLECTANCE SPECTROSCOPIC ANALYSIS OF SOIL C AND N , 2002 .

[48]  Thomas Cudahy,et al.  Vegetation corrected continuum depths at 2.20 µm: An approach for hyperspectral sensors , 2009 .

[49]  L. Hoffmann,et al.  Measuring soil organic carbon in croplands at regional scale using airborne imaging spectroscopy , 2010 .

[50]  Lênio Soares Galvão,et al.  The combined use of reflectance, emissivity and elevation Aster/Terra data for tropical soil studies. , 2009 .

[51]  Biqing Liang,et al.  Carbon K‐Edge NEXAFS and FTIR‐ATR Spectroscopic Investigation of Organic Carbon Speciation in Soils , 2005 .

[52]  R. V. Rossel,et al.  Soil organic carbon prediction by hyperspectral remote sensing and field vis-NIR spectroscopy: An Australian case study , 2008 .

[53]  J. Hill,et al.  Using Imaging Spectroscopy to study soil properties , 2009 .

[54]  Y. Ninomiya,et al.  Detecting lithology with Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) multispectral thermal infrared “radiance-at-sensor” data , 2005 .

[55]  T. E. Gough,et al.  Optothermal Infrared Spectroscopy , 1981 .

[56]  John W. Salisbury,et al.  Emissivity of terrestrial materials in the 8-14 microns atmospheric window , 1992 .

[57]  Christopher D. Elvidge,et al.  Thermal infrared reflectance of dry plant materials: 2.5–20.0 μm , 1988 .

[58]  Eyal Ben-Dor,et al.  Near-Infrared Analysis as a Rapid Method to Simultaneously Evaluate Several Soil Properties , 1995 .

[59]  L. Rowan,et al.  Lithologic mapping in the Mountain Pass, California area using Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) data , 2003 .

[60]  C. Hurburgh,et al.  Near-Infrared Reflectance Spectroscopy–Principal Components Regression Analyses of Soil Properties , 2001 .

[61]  R. Graham Electromagnetic radiation; the communication link in remote sensing , 1980 .

[62]  Michael E. Schaepman,et al.  Determining iron content in Mediterranean soils in partly vegetated areas, using spectral reflectance and imaging spectroscopy , 2007, Int. J. Appl. Earth Obs. Geoinformation.

[63]  Philippe Lagueux,et al.  A Hyperspectral Thermal Infrared Imaging Instrument for Natural Resources Applications , 2012, Remote. Sens..

[64]  Sabine Chabrillat,et al.  Imaging Spectrometry for Soil Applications , 2008 .

[65]  Eyal Ben-Dor,et al.  Spectral Characteristics of Cyanobacteria Soil Crust in Semiarid Environments , 1999 .

[66]  R. V. Rossel,et al.  Visible, near infrared, mid infrared or combined diffuse reflectance spectroscopy for simultaneous assessment of various soil properties , 2006 .

[67]  A. Walkley,et al.  AN EXAMINATION OF THE DEGTJAREFF METHOD FOR DETERMINING SOIL ORGANIC MATTER, AND A PROPOSED MODIFICATION OF THE CHROMIC ACID TITRATION METHOD , 1934 .

[68]  G. Hunt Visible and near-infrared spectra of minerals and rocks : I silicate minerals , 1970 .

[69]  W. Amelung,et al.  Particulate Organic Matter at the Field Scale: Rapid Acquisition Using Mid-Infrared Spectroscopy , 2010 .

[70]  T. Cudahy,et al.  Seamless geological map generation using ASTER in the Broken Hill-Curnamona province of Australia , 2005 .

[71]  Sabine Chabrillat,et al.  Use of hyperspectral images in the identification and mapping of expansive clay soils and the role of spatial resolution , 2002 .

[72]  Raymond F. Kokaly,et al.  Characterizing regional soil mineral composition using spectroscopy and geostatistics , 2013 .

[73]  L. Janik,et al.  Can mid infrared diffuse reflectance analysis replace soil extractions , 1998 .

[74]  John W. Salisbury,et al.  Infrared (8–14 μm) remote sensing of soil particle size , 1992 .