Novel porphyrinoids, 15. Syntheses of novel expanded [26]porphyrins with conformational control by the “helical effect”

Novel [26]porphyrinogens[2]24–28 were conveniently prepared in few steps from the pyrrole building blocks 19–23. The selectivity of the cyclization is explained by a conformational helical effect due to steric congestion of the pyrrole β-substituents. The aromaticity of the [26]porphyrins[2]30–33, obtained by dehydrogenation of the porphyrinogens, is evident from the 1H-NMR spectra displaying 25-ppm shift differences for the inner and outer protons of the porphyrins. These pigments belong to the most intensive chromophores known so far, showing VIS absorptions at 544–550 nm with lg ϵ values up to 5.9.

[1]  A. Scott Wie die Natur Vitamin B12 synthetisiert – ein Überblick über die letzten vier Milliarden Jahre , 1993 .

[2]  A. Ian Scott,et al.  How Nature Synthesizes Vitamin B12 ? A Survey of the Last Four Billion Years , 1993 .

[3]  U. Rodewald,et al.  Porphyries with Aromatic 26π-Electron Systems†‡ , 1993 .

[4]  B. Franck,et al.  Porphyrine mit aromatischem 26π-Elektronensystem†‡ , 1993 .

[5]  L. Tietze,et al.  Warum ist Porphobilinogen das biologische Substrat für die Bildung der Porphyrine? Rechnungen zur Konformation acyclischer Tetrapyrrole sowie säurekatalysierte Cyclisierung von Hydroxymethylpyrrolen†‡ , 1993 .

[6]  L. Tietze,et al.  Why is Porphobilinogen the Biological Substrate for the Formation of Porphyrins? Calculations on the Conformation of Acyclic Tetrapyrroles and the Acid‐Catalyzed Cyclization of Hydroxymethylpyrroles , 1993 .

[7]  R. Schmidt,et al.  POTENTIAL PHOTOSENSITIZERS FOR PHOTODYNAMIC THERAPY—II. PHOTOPHYSICAL PROPERTIES OF [26] PORPHYRIN , 1990 .

[8]  B. Franck,et al.  Biomimetische Synthese eines octavinylogen Porphyrins mit aromatischem [34]Annulensystem , 1988 .

[9]  B. Franck,et al.  Biomimetic Synthesis of an Octavinylogous Porphyrin with an Aromatic [34]Annulene System† , 1988 .

[10]  G. Wegner,et al.  Conducting Polymers from 3,4-Disubstituted Polypyrroles , 1987 .

[11]  B. Franck,et al.  Synthese eines vierfach aufgeweiteten Porphyrins mit extrem hohem, diamagnetischem Ringstromeffekt , 1986 .

[12]  B. Franck,et al.  Synthesis of a Fourfold Enlarged Porphyrin with an Extremely Large, Diamagnetic Ring‐Current Effect , 1986 .

[13]  B. Franck Topical Problems in the Biosynthesis of Red Blood Pigment , 1982 .

[14]  L. Hoesch Stereochemie und Konformationsanalyse. Von J. Dale. Verlag Chemie, Weinheim, New York 1978. XII, 208 S., 39 Abb., 37 Tab., Br. DM 38,– , 1979 .

[15]  E. Legoff,et al.  GENERAL SYNTHESIS OF OCTAALKYLPORPHYRINS , 1979 .

[16]  O. Wennerström,et al.  Acylation of Enamines. III. Reduction of Protonated Enaminones with Sodium Borohydride. Synthesis of alpha,beta-Unsaturated Ketones. , 1979 .

[17]  H. Eckert,et al.  Synthesis of probable and improbable precursors for porphyrin biosynthesis. , 1976, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[18]  B. Franck,et al.  Ein N,N′,N″,N‴‐Tetramethyl‐porphyrinogen , 1975 .

[19]  B. Franck,et al.  A N,N',N'',N'''-tetramethylporphyrinogen. , 1975, Angewandte Chemie.

[20]  W. Sucrow,et al.  Die Synthese von (24(28)Z)‐Δ7.24(28)‐5α‐Stigmastadienol‐(3β) , 1969 .

[21]  D. Mauzerall The Condensation of Porphobilinogen to Uroporphyrinogen1 , 1960 .

[22]  N. L. Allinger,et al.  Conformational Analysis. IX. The Gem-Dimethyl Effect1,2 , 1960 .