Optimal experimental designs for functional magnetic resonance imaging

Blocked designs in functional magnetic resonance imaging (fMRI) are useful to localize functional brain areas. A blocked design consists of different blocks of trials of the same stimulus type and is characterized by three factors: the length of blocks, i.e., number of trials per blocks, the ordering of task and rest blocks and the time between trials within one block. Optimal design theory was applied to find the optimal combination of these three design factors. Furthermore, different error structures were used within a general linear model for the analysis of fMRI data, and the maximin criterion was applied to find designs which are robust against misspecification of model parameters.

[1]  Karl J. Friston,et al.  Convolution Models for fMRI , 2007 .

[2]  M. Lovell Seasonal Adjustment of Economic Time Series and Multiple Regression Analysis , 1963 .

[3]  Karl J. Friston,et al.  Some Limit Results for Efficiency in Stochastic fMRI Designs , 2002 .

[4]  Holger Dette,et al.  Maximin efficient design of experiment for exponential regression models , 2006 .

[5]  John Suckling,et al.  Components of variance in a multicentre functional MRI study and implications for calculation of statistical power , 2008, Human brain mapping.

[6]  P A Bandettini,et al.  Effects of stimulus rate on signal response during functional magnetic resonance imaging of auditory cortex. , 1994, Brain research. Cognitive brain research.

[7]  Kevin Murphy,et al.  An empirical investigation into the number of subjects required for an event-related fMRI study , 2004, NeuroImage.

[8]  M. Lindquist The Statistical Analysis of fMRI Data. , 2008, 0906.3662.

[9]  Thomas E. Nichols,et al.  Thresholding of Statistical Maps in Functional Neuroimaging Using the False Discovery Rate , 2002, NeuroImage.

[10]  Stefan Pollmann,et al.  Use of Short Intertrial Intervals in Single-Trial Experiments: A 3T fMRI-Study , 1998, NeuroImage.

[11]  M. Corbetta,et al.  Separating Processes within a Trial in Event-Related Functional MRI I. The Method , 2001, NeuroImage.

[12]  Stephen M. Smith,et al.  Functional MRI : an introduction to methods , 2002 .

[13]  John C. Gore,et al.  ROC Analysis of Statistical Methods Used in Functional MRI: Individual Subjects , 1999, NeuroImage.

[14]  Karl J. Friston,et al.  Modelling functional integration: a comparison of structural equation and dynamic causal models , 2004, NeuroImage.

[15]  R. Turner,et al.  Event-Related fMRI: Characterizing Differential Responses , 1998, NeuroImage.

[16]  G. Barker,et al.  Study design in fMRI: Basic principles , 2006, Brain and Cognition.

[17]  Thomas T. Liu,et al.  Part II: design of experiments , 2022 .

[18]  K. Chaloner,et al.  Bayesian Experimental Design: A Review , 1995 .

[19]  Karl J. Friston,et al.  Event‐related f MRI , 1997, Human brain mapping.

[20]  Rainer Goebel,et al.  Cortex-based independent component analysis of fMRI time series. , 2004 .

[21]  M. D’Esposito,et al.  The Variability of Human, BOLD Hemodynamic Responses , 1998, NeuroImage.

[22]  A. Dale,et al.  Selective averaging of rapidly presented individual trials using fMRI , 1997, Human brain mapping.

[23]  Karl J. Friston,et al.  Stochastic Designs in Event-Related fMRI , 1999, NeuroImage.

[24]  Toshiharu Nakai,et al.  The effect of task block arrangement on the detectability of activation in fMRI. , 2003, Magnetic resonance imaging.

[25]  Jordan Grafman,et al.  Handbook of Neuropsychology , 1991 .

[26]  A M Dale,et al.  Estimation and detection of event‐related fMRI signals with temporally correlated noise: A statistically efficient and unbiased approach , 2000, Human brain mapping.

[27]  Karl J. Friston,et al.  Classical and Bayesian Inference in Neuroimaging: Theory , 2002, NeuroImage.

[28]  A M Dale,et al.  Randomized event‐related experimental designs allow for extremely rapid presentation rates using functional MRI , 1998, Neuroreport.

[29]  M. Lindquist,et al.  Validity and power in hemodynamic response modeling: A comparison study and a new approach , 2007, Human brain mapping.

[30]  W. D. Penny,et al.  Random-Effects Analysis , 2002 .

[31]  Michael I. Jordan,et al.  Robust design of biological experiments , 2005, NIPS.

[32]  G. Glover Deconvolution of Impulse Response in Event-Related BOLD fMRI1 , 1999, NeuroImage.

[33]  M. D’Esposito,et al.  Experimental Design for Brain fMRI , 2000 .

[34]  Russell A. Epstein,et al.  fMRI: applications to cognitive neuroscience , 2001 .

[35]  Alan C. Evans,et al.  A general statistical analysis for fMRI data , 2000, NeuroImage.

[36]  O Josephs,et al.  Event-related functional magnetic resonance imaging: modelling, inference and optimization. , 1999, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[37]  J. Sanes,et al.  Improved Detection of Event-Related Functional MRI Signals Using Probability Functions , 2001, NeuroImage.

[38]  Richard N. Henson,et al.  CHAPTER 15 – Efficient Experimental Design for fMRI , 2007 .

[39]  Anthony C. Atkinson,et al.  Optimum Experimental Designs , 1992 .

[40]  Karl J. Friston,et al.  Analysis of functional MRI time‐series , 1994, Human Brain Mapping.

[41]  Karl J. Friston,et al.  Statistical parametric mapping , 2013 .

[42]  W. Penny,et al.  Random-Effects Analysis , 2002 .

[43]  Martijn P F Berger,et al.  Maximin D‐Optimal Designs for Longitudinal Mixed Effects Models , 2002, Biometrics.

[44]  Thomas T. Liu,et al.  Efficiency, power, and entropy in event-related FMRI with multiple trial types Part I: theory , 2004, NeuroImage.

[45]  Peter A. Bandettini,et al.  From neuron to BOLD: new connections , 2001, Nature Neuroscience.

[46]  S. Hayasaka,et al.  Power and sample size calculation for neuroimaging studies by non-central random field theory , 2007, NeuroImage.

[47]  G. McCarthy,et al.  Evidence for a Refractory Period in the Hemodynamic Response to Visual Stimuli as Measured by MRI , 2000, NeuroImage.

[48]  R. Buxton,et al.  Modeling the hemodynamic response to brain activation , 2004, NeuroImage.

[49]  E. Bullmore,et al.  Functional Neuroimaging and Schizophrenia , 2002 .

[50]  T. H. Le,et al.  Functional MRI of human auditory cortex using block and event‐related designs , 2001, Magnetic resonance in medicine.

[51]  R. Turner,et al.  Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[52]  Chris Chatfield,et al.  The Analysis of Time Series: An Introduction , 1981 .

[53]  Nikos K Logothetis,et al.  Interpreting the BOLD signal. , 2004, Annual review of physiology.

[54]  E. Bullmore,et al.  Statistical methods of estimation and inference for functional MR image analysis , 1996, Magnetic resonance in medicine.

[55]  Mark W. Woolrich,et al.  Meaningful design and contrast estimability in FMRI , 2007, NeuroImage.

[56]  R. Cox,et al.  Event‐related fMRI contrast when using constant interstimulus interval: Theory and experiment , 2000, Magnetic resonance in medicine.

[57]  Thomas E. Nichols,et al.  Power calculation for group fMRI studies accounting for arbitrary design and temporal autocorrelation , 2008, NeuroImage.

[58]  Mark W. Woolrich,et al.  Constrained linear basis sets for HRF modelling using Variational Bayes , 2004, NeuroImage.

[59]  Jeff H. Duyn,et al.  Temporal dynamics of the BOLD fMRI impulse response , 2005, NeuroImage.

[60]  A M Dale,et al.  Event-related functional MRI: past, present, and future. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[61]  Stephen M. Smith,et al.  Temporal Autocorrelation in Univariate Linear Modeling of FMRI Data , 2001, NeuroImage.

[62]  Stephen M. Smith,et al.  General multilevel linear modeling for group analysis in FMRI , 2003, NeuroImage.

[63]  Jody C. Culham,et al.  Functional Neuroimaging : Experimental Design and Analysis , 2005 .

[64]  George A. F. Seber,et al.  Linear regression analysis , 1977 .

[65]  Jean-Baptiste Poline,et al.  Unsupervised robust nonparametric estimation of the hemodynamic response function for any fMRI experiment , 2003, IEEE Transactions on Medical Imaging.

[66]  D. Harville Matrix Algebra From a Statistician's Perspective , 1998 .

[67]  M. Berger,et al.  Robust designs for linear mixed effects models , 2004 .

[68]  Douglas C. Noll,et al.  Accounting for nonlinear BOLD effects in fMRI: parameter estimates and a model for prediction in rapid event-related studies , 2005, NeuroImage.

[69]  Rainer Goebel,et al.  Sustained extrastriate cortical activation without visual awareness revealed by fMRI studies of hemianopic patients , 2001, Vision Research.

[70]  Anthony C. Atkinson,et al.  Optimum Experimental Designs, with SAS , 2007 .

[71]  Mark D'Esposito,et al.  Variation of BOLD hemodynamic responses across subjects and brain regions and their effects on statistical analyses , 2004, NeuroImage.

[72]  Marc M. Van Hulle,et al.  Estimating the global order of the fMRI noise model , 2005, NeuroImage.

[73]  Nicholas Roy,et al.  Global A-Optimal Robot Exploration in SLAM , 2005, Proceedings of the 2005 IEEE International Conference on Robotics and Automation.

[74]  Gary H Glover,et al.  Estimating sample size in functional MRI (fMRI) neuroimaging studies: Statistical power analyses , 2002, Journal of Neuroscience Methods.

[75]  P. Laycock,et al.  Optimum Experimental Designs , 1995 .

[76]  Geoffrey M. Boynton,et al.  Efficient Design of Event-Related fMRI Experiments Using M-Sequences , 2002, NeuroImage.

[77]  Lars Kai Hansen,et al.  Modeling the hemodynamic response in fMRI using smooth FIR filters , 2000, IEEE Transactions on Medical Imaging.

[78]  Genevieve M. Heckman,et al.  Nonlinearities in rapid event-related fMRI explained by stimulus scaling , 2007, NeuroImage.

[79]  P. Matthews,et al.  Effective Paradigm Design , 2001 .

[80]  M. Bianciardi,et al.  Evaluation of mixed effects in event-related fMRI studies: impact of first-level design and filtering , 2004, NeuroImage.

[81]  R. Goebel,et al.  Exploring brain function with magnetic resonance imaging. , 1999, European journal of radiology.

[82]  Keith J. Worsley,et al.  Spatial smoothing of autocorrelations to control the degrees of freedom in fMRI analysis , 2005, NeuroImage.

[83]  L. Fahrmeir,et al.  Bayesian Modeling of the Hemodynamic Response Function in BOLD fMRI , 2001, NeuroImage.

[84]  E. Walter,et al.  Robust experiment design via maximin optimization , 1988 .

[85]  J. Rajapakse,et al.  Human Brain Mapping 6:283–300(1998) � Modeling Hemodynamic Response for Analysis of Functional MRI Time-Series , 2022 .

[86]  S. Petersen,et al.  Characterizing the Hemodynamic Response: Effects of Presentation Rate, Sampling Procedure, and the Possibility of Ordering Brain Activity Based on Relative Timing , 2000, NeuroImage.

[87]  M. Corbetta,et al.  Separating Processes within a Trial in Event-Related Functional MRI II. Analysis , 2001, NeuroImage.

[88]  M. D’Esposito,et al.  A Trial-Based Experimental Design for fMRI , 1997, NeuroImage.

[89]  D. Heeger,et al.  Linear Systems Analysis of Functional Magnetic Resonance Imaging in Human V1 , 1996, The Journal of Neuroscience.

[90]  Peter A. Bandettini,et al.  Detection versus Estimation in Event-Related fMRI: Choosing the Optimal Stimulus Timing , 2002, NeuroImage.

[91]  F. Giesel,et al.  Methodische Grundlagen der Optimierung funktioneller MR-Experimente , 2005, Der Radiologe.

[92]  A M Dale,et al.  Optimal experimental design for event‐related fMRI , 1999, Human brain mapping.

[93]  John Conlisk,et al.  A model for optimizing experimental designs for estimating response surfaces , 1979 .

[94]  Mark S. Cohen,et al.  Parametric Analysis of fMRI Data Using Linear Systems Methods , 1997, NeuroImage.

[95]  S. Ogawa,et al.  Oxygenation‐sensitive contrast in magnetic resonance image of rodent brain at high magnetic fields , 1990, Magnetic resonance in medicine.

[96]  Karl J. Friston,et al.  A unified statistical approach for determining significant signals in images of cerebral activation , 1996, Human brain mapping.

[97]  S E Petersen,et al.  Detection of cortical activation during averaged single trials of a cognitive task using functional magnetic resonance imaging. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[98]  N. Kanwisher,et al.  The Fusiform Face Area: A Module in Human Extrastriate Cortex Specialized for Face Perception , 1997, The Journal of Neuroscience.

[99]  Martijn P. F. Berger,et al.  Optimal Designs for Multilevel Studies , 2008 .

[100]  Yul-Wan Sung,et al.  Functional magnetic resonance imaging , 2004, Scholarpedia.

[101]  R. Weisskoff,et al.  Effect of temporal autocorrelation due to physiological noise and stimulus paradigm on voxel‐level false‐positive rates in fMRI , 1998, Human brain mapping.

[102]  G. McCarthy,et al.  The Effects of Aging upon the Hemodynamic Response Measured by Functional MRI , 2001, NeuroImage.

[103]  Soon Chun Siong,et al.  Comparison of block and event‐related fMRI designs in evaluating the word‐frequency effect , 2003, Human brain mapping.

[104]  R. Buxton,et al.  Detection Power, Estimation Efficiency, and Predictability in Event-Related fMRI , 2001, NeuroImage.

[105]  Karl J. Friston,et al.  Analysis of fMRI Time-Series Revisited , 1995, NeuroImage.

[106]  Thomas E. Nichols,et al.  Optimization of experimental design in fMRI: a general framework using a genetic algorithm , 2003, NeuroImage.

[107]  S. Faro,et al.  Investigation of Alternating and Continuous Experimental Task Designs During Single Finger Opposition fMRI: A Comparative Study , 2000, Journal of computer assisted tomography.

[108]  Karl J. Friston,et al.  Analysis of fMRI Time-Series Revisited—Again , 1995, NeuroImage.

[109]  H. Schouten,et al.  Sample size formula with a continuous outcome for unequal group sizes and unequal variances. , 1999, Statistics in medicine.

[110]  B. Rosen,et al.  Functional mapping of the human visual cortex by magnetic resonance imaging. , 1991, Science.