Morphology-tailored synthesis of tungsten trioxide (hydrate) thin films and their photocatalytic properties.

Tungsten trioxide hydrate (3WO(3)·H(2)O) films with different morphologies were directly grown on fluorine doped tin oxide (FTO) substrate via a facile crystal-seed-assisted hydrothermal method. Scanning electron microscopy (SEM) analysis showed that 3WO(3)·H(2)O thin films composed of platelike, wedgelike, and sheetlike nanostructures could be selectively synthesized by adding Na(2)SO(4), (NH(4))(2)SO(4), and CH(3)COONH(4) as capping agents, respectively. X-ray diffraction (XRD) studies indicated that these films were of orthorhombic structure. The as-prepared thin films after dehydration showed obvious photocatalytic activities. The best film grown using CH(3)COONH(4) as a capping agent generated anodic photocurrents of 1.16 mA/cm(2) for oxidization of methanol and 0.5 mA/cm(2) for water splitting with the highest photoconversion efficiency of about 0.3% under simulated solar illumination.

[1]  Yingjie Zhang,et al.  Enhanced Photoelectrochemical Activity of Sol−Gel Tungsten Trioxide Films through Textural Control , 2007 .

[2]  Shuo Chen,et al.  Direct growth and photoelectrochemical properties of tungsten oxide nanobelt arrays , 2008, Nanotechnology.

[3]  Jan Augustynski,et al.  Photoelectrochemical Properties of Nanostructured Tungsten Trioxide Films , 2001 .

[4]  U. Bloeck,et al.  How isopolyanions self-assemble and condense into a 2D tungsten oxide crystal: HRTEM imaging of atomic arrangement in an intermediate new hexagonal phase , 2008 .

[5]  Claes-Göran Granqvist,et al.  Electrochromic tungsten oxide films: Review of progress 1993–1998 , 2000 .

[6]  M. Grätzel Photoelectrochemical cells : Materials for clean energy , 2001 .

[7]  W. Wlodarski,et al.  Synthesis of Nanostructured Tungsten Oxide Thin Films: A Simple, Controllable, Inexpensive, Aqueous Sol−Gel Method , 2010 .

[8]  R. Rocheleau,et al.  Progress in sputtered tungsten trioxide for photoelectrode applications , 2007 .

[9]  Michael A. Butler,et al.  Photoelectrolysis and physical properties of the semiconducting electrode WO2 , 1977 .

[10]  Xiaoming Sun,et al.  Highly sensitive WO3 hollow-sphere gas sensors. , 2004, Inorganic chemistry.

[11]  Jang-Hoon Ha,et al.  Hydrothermal synthesis and characterization of self-assembled h-WO3 nanowires/nanorods using EDTA salts , 2009 .

[12]  Xiao Wei Sun,et al.  Bilayer ZnO nanostructure fabricated by chemical bath and its application in quantum dot sensitized solar cell , 2009 .

[13]  Jinmin Wang,et al.  Synthesis, Assembly, and Electrochromic Properties of Uniform Crystalline WO3 Nanorods , 2008 .

[14]  M. Graetzel,et al.  Highly ordered SnO2 nanorod arrays from controlled aqueous growth. , 2004, Angewandte Chemie.

[15]  J. Yao,et al.  Controllable assembly of WO3 nanorods/nanowires into hierarchical nanostructures. , 2006, The journal of physical chemistry. B.

[16]  Charles C. Sorrell,et al.  Photo-electrochemical hydrogen generation from water using solar energy. Materials-related aspects , 2002 .

[17]  C. E. Tracy,et al.  The effect of thermal annealing on photoelectrochemical responses of WO3 thin films , 2007 .

[18]  J. S. Lee,et al.  Size effects of WO3 nanocrystals for photooxidation of water in particulate suspension and photoelectrochemical film systems , 2009 .

[19]  Xiao Wei Sun,et al.  Hydrothermally grown oriented ZnO nanorod arrays for gas sensing applications , 2006 .

[20]  M. Pelino,et al.  Microstructural effect on NO2 sensitivity of WO3 thin film gas sensors Part 1. Thin film devices, sensors and actuators , 1996 .

[21]  J. Augustynski,et al.  Photoelectrolytic oxidation of organic species at mesoporous tungsten trioxide film electrodes under visible light illumination , 2005 .

[22]  A. Lancia,et al.  Recovery of Tungstate from Aqueous Solutions by Ion Exchange , 2007 .

[23]  K. Latham,et al.  Anodization of Ti thin film deposited on ITO. , 2009, Langmuir : the ACS journal of surfaces and colloids.

[24]  E. Wang,et al.  Nanocrystalline tungsten oxide thin film: Preparation, microstructure, and photochromic behavior , 2000 .

[25]  P. Kulesza,et al.  Metal oxide photoanodes for solar hydrogen production , 2008 .

[26]  M. Neumann-Spallart,et al.  Photoelectrochemical Characterization of Semitransparent WO3 Films , 2005 .

[27]  Gunnar A. Niklasson,et al.  Electrochromics for smart windows: thin films of tungsten oxide and nickel oxide, and devices based on these , 2007 .

[28]  Pooi See Lee,et al.  One-Pot Synthesis of Hierarchically Assembled Tungsten Oxide (Hydrates) Nano/Microstructures by a Crystal-Seed-Assisted Hydrothermal Process , 2009 .

[29]  S. Badilescu,et al.  Study of sol–gel prepared nanostructured WO3 thin films and composites for electrochromic applications , 2003 .

[30]  B. Ohtani,et al.  Fabrication and photoelectrochemical property of tungsten(vi) oxide films with a flake-wall structure. , 2010, Chemical communications.

[31]  U. Jansson,et al.  Synthesis of Nanostructured Tungsten Oxide Thin Films , 2008 .

[32]  B. Li,et al.  Enhanced energy conversion efficiency of TiO2 electrode modified with WO3 in dye-sensitized solar cells , 2008 .