Isotropic force control for haptic interfaces

This paper describes a multivariable modeling and control strategy that increases the bandwidth of isotropic force transmission in multi-degree of freedom haptic interfaces. The controller structure leads to a straightforward model identification procedure and yields a simple control law that can be easily implemented. Experimental results show that the multivariable closed-loop control significantly improves performance on a five degree-of-freedom in-parallel haptic interface.

[1]  Gene F. Franklin,et al.  Digital control of dynamic systems , 1980 .

[2]  Massimo Bergamasco,et al.  An arm exoskeleton system for teleoperation and virtual environments applications , 1994, Proceedings of the 1994 IEEE International Conference on Robotics and Automation.

[3]  M. Vidyasagar Control System Synthesis : A Factorization Approach , 1988 .

[4]  Il Hong Suh,et al.  A design method of a haptic interface controller considering transparency and robust stability , 2000, Proceedings. 2000 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2000) (Cat. No.00CH37113).

[5]  P. Gahinet,et al.  A convex characterization of gain-scheduled H∞ controllers , 1995, IEEE Trans. Autom. Control..

[6]  I. Postlethwaite,et al.  The generalized Nyquist stability criterion and multivariable root loci , 1977 .

[7]  Dong-Soo Kwon,et al.  Control of the haptic interface with friction compensation and its performance evaluation , 2000, Proceedings. 2000 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2000) (Cat. No.00CH37113).

[8]  Antonio Frisoli,et al.  The hand force feedback: analysis and control of a haptic device for the human-hand , 2000, Smc 2000 conference proceedings. 2000 ieee international conference on systems, man and cybernetics. 'cybernetics evolving to systems, humans, organizations, and their complex interactions' (cat. no.0.

[9]  Dale A. Lawrence,et al.  Impedance control stability properties in common implementations , 1988, Proceedings. 1988 IEEE International Conference on Robotics and Automation.

[10]  Lennart Ljung,et al.  System Identification: Theory for the User , 1987 .

[11]  L.Y. Pao,et al.  Dynamic modeling and parameter identification of a parallel haptic interface , 2002, Proceedings 10th Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems. HAPTICS 2002.

[12]  Vincent Hayward,et al.  Performance Measures for Haptic Interfaces , 1996 .

[13]  Ian Postlethwaite,et al.  Multivariable Feedback Control: Analysis and Design , 1996 .

[14]  Neville Hogan,et al.  Impedance Control: An Approach to Manipulation: Part I—Theory , 1985 .

[15]  Vincent Hayward,et al.  Parameter Sensitivity Analysis for Design and Control of Force Transmission Systems , 1998 .

[16]  R. Johansson,et al.  Responses in glabrous skin mechanoreceptors during precision grip in humans , 2004, Experimental Brain Research.

[17]  M. Srinivasan,et al.  Tactile detection of slip: surface microgeometry and peripheral neural codes. , 1990, Journal of neurophysiology.

[18]  Robert D. Howe,et al.  Tactile Display of Vibratory Information in Teleoperation and Virtual Environments , 1995, Presence: Teleoperators & Virtual Environments.

[19]  S. Bolanowski,et al.  Four channels mediate the mechanical aspects of touch. , 1988, The Journal of the Acoustical Society of America.

[20]  Lucy Y. Pao,et al.  Rate-hardness: a new performance metric for haptic interfaces , 2000, IEEE Trans. Robotics Autom..

[21]  Lucy Y. Pao,et al.  Shock and vortex visualization using a combined visual/Haptic interface , 2000 .

[22]  Kevin Cleary,et al.  Closed-Loop Force Control for Haptic Simulation of Virtual Environments , 2000 .

[23]  Warren P. Seering,et al.  Understanding bandwidth limitations in robot force control , 1987, Proceedings. 1987 IEEE International Conference on Robotics and Automation.

[24]  Blake Hannaford,et al.  Stable haptic interaction with virtual environments , 1999, IEEE Trans. Robotics Autom..

[25]  Robert D. Howe,et al.  Tactile Display of High-Frequency Information in Teleoperation and Virtual Environments. , 1995 .

[26]  Richard Bellman,et al.  Introduction to Matrix Analysis , 1972 .

[27]  Hideki Hashimoto,et al.  Friction compensation for 6DOF Cartesian coordinate haptic interface , 2002, IEEE/RSJ International Conference on Intelligent Robots and Systems.

[28]  S. E. Salcudean,et al.  On the Emulation of Stiff Walls and Static Friction with a Magnetically Levitated Input/Output Devic , 1997 .

[29]  B. D. Adelstein,et al.  Perceptual decomposition of virtual haptic surfaces , 1993, Proceedings of 1993 IEEE Research Properties in Virtual Reality Symposium.

[30]  Dale A. Lawrence,et al.  Performance trade-offs for hand controller design , 1994, Proceedings of the 1994 IEEE International Conference on Robotics and Automation.

[31]  Neville Hogan,et al.  Impedance Control: An Approach to Manipulation , 1984, 1984 American Control Conference.

[32]  John J. Craig,et al.  Hybrid position/force control of manipulators , 1981 .