Producing Ultrastrong Magnetic Fields in Neutron Star Mergers

We report an extremely rapid mechanism for magnetic field amplification during the merger of a binary neutron star system. This has implications for the production of the short class of gamma-ray bursts, which recent observations suggest may originate in such mergers. In detailed magnetohydrodynamic simulations of the merger process, the fields are amplified by Kelvin-Helmholtz instabilities beyond magnetar field strength and may therefore represent the strongest magnetic fields in the universe. The amplification occurs in the shear layer that forms between the neutron stars and on a time scale of only 1 millisecond, that is, long before the remnant can collapse into a black hole.

[1]  P. Giommi,et al.  An origin for short γ-ray bursts unassociated with current star formation , 2005, Nature.

[2]  Daniel J. Price,et al.  Smoothed particle magnetohydrodynamics - III. Multidimensional tests and the B = 0 constraint , 2005, astro-ph/0509083.

[3]  P. B. Cameron,et al.  The afterglow and elliptical host galaxy of the short γ-ray burst GRB 050724 , 2005, Nature.

[4]  E. Ramirez-Ruiz,et al.  Closing in on a Short-Hard Burst Progenitor: Constraints from Early-Time Optical Imaging and Spectroscopy of a Possible Host Galaxy of GRB 050509b , 2005, astro-ph/0505480.

[5]  T. Sakamoto,et al.  A giant γ-ray flare from the magnetar SGR 1806–20 , 2005, Nature.

[6]  M. Shibata,et al.  Merger of binary neutron stars with realistic equations of state in full general relativity , 2005, gr-qc/0503119.

[7]  A. Rau,et al.  An exceptionally bright flare from SGR 1806–20 and the origins of short-duration γ-ray bursts , 2005, Nature.

[8]  T. Piran The physics of gamma-ray bursts , 2004, astro-ph/0405503.

[9]  M. Aloy,et al.  Relativistic outflows from remnants of compact object mergers and their viability for short gamma-ray bursts , 2004, astro-ph/0408291.

[10]  Joshua R. Smith,et al.  The status of GEO 600 , 2004, SPIE Astronomical Telescopes + Instrumentation.

[11]  Melvyn B. Davies,et al.  High-resolution calculations of merging neutron stars - III. Gamma-ray bursts , 2003, astro-ph/0306418.

[12]  C. I. O. Technology.,et al.  Polarization of Prompt Gamma-Ray Burst Emission: Evidence for Electromagnetically Dominated Outflow , 2003, astro-ph/0305410.

[13]  M. Lyutikov Explosive reconnection in magnetars , 2003, astro-ph/0303384.

[14]  S. Rosswog,et al.  High‐resolution calculations of merging neutron stars – II. Neutrino emission , 2003, astro-ph/0302301.

[15]  M. B. Davies,et al.  High-resolution calculations of merging neutron stars - I. Model description and hydrodynamic evolution , 2001, astro-ph/0110180.

[16]  M. Ruffert,et al.  Coalescing neutron stars -A step towards physical models - III. Improved numerics and different neutron star masses and spins , 2001, astro-ph/0106229.

[17]  Hong Shen,et al.  Relativistic equation of state of nuclear matter for supernova and neutron star , 1998 .

[18]  M. Rees,et al.  Poynting Jets from Black Holes and Cosmological Gamma-Ray Bursts , 1996, astro-ph/9609065.

[19]  J. Monaghan Smoothed particle hydrodynamics , 2005 .

[20]  L. Bildsten,et al.  Tidal interactions of inspiraling compact binaries , 1992 .

[21]  Christopher Thompson,et al.  Formation of very strongly magnetized neutron stars - Implications for gamma-ray bursts , 1992 .

[22]  V. Usov,et al.  Millisecond pulsars with extremely strong magnetic fields as a cosmological source of γ-ray bursts , 1992 .

[23]  Joshua R. Smith,et al.  LIGO: the Laser Interferometer Gravitational-Wave Observatory , 1992, Science.

[24]  T. Piran,et al.  Gamma-ray bursts as the death throes of massive binary stars , 1992, astro-ph/9204001.

[25]  L. Rezzolla,et al.  Classical and Quantum Gravity , 2002 .

[26]  M. Livio,et al.  Nucleosynthesis, neutrino bursts and γ-rays from coalescing neutron stars , 1989, Nature.

[27]  S. Shapiro,et al.  Neutrino-driven winds from young, hot neutron stars , 1986 .

[28]  R. E. Casten,et al.  Nuclear Physics , 1935, Nature.