Information geometry of target tracking sensor networks
暂无分享,去创建一个
Mark R. Morelande | William Moran | Xuezhi Wang | Yongqiang Cheng | M. Morelande | Xuezhi Wang | Yongqiang Cheng | W. Moran
[1] V. Arnold. Sur la géométrie différentielle des groupes de Lie de dimension infinie et ses applications à l'hydrodynamique des fluides parfaits , 1966 .
[2] Alfred Gray,et al. The volume of a small geodesic ball of a Riemannian manifold. , 1974 .
[3] Michael I. Jordan,et al. Graphical Models, Exponential Families, and Variational Inference , 2008, Found. Trends Mach. Learn..
[4] Christopher T. J. Dodson,et al. Universal connection and curvature for statistical manifold geometry , 2007 .
[5] Y. Ollivier. Ricci curvature of Markov chains on metric spaces , 2007, math/0701886.
[6] Shun-ichi Amari,et al. Statistical inference under multiterminal rate restrictions: A differential geometric approach , 1989, IEEE Trans. Inf. Theory.
[7] A. Ohara. Information Geometric Analysis of a Interior-Point Method for Semidefinite Programming , 1997 .
[8] L. L. Campbell,et al. The relation between information theory and the differential geometry approach to statistics , 1985, Inf. Sci..
[9] Shun-ichi Amari,et al. Information geometry of the EM and em algorithms for neural networks , 1995, Neural Networks.
[10] Alfred O. Hero,et al. FINE: Fisher Information Nonparametric Embedding , 2008, IEEE Transactions on Pattern Analysis and Machine Intelligence.
[11] Jorma Laaksonen,et al. Principal whitened gradient for information geometry , 2008, Neural Networks.
[12] S. Amari. Differential Geometry of Curved Exponential Families-Curvatures and Information Loss , 1982 .
[13] William Moran,et al. Multitarget Tracking Using Virtual Measurement of Binary Sensor Networks , 2006, 2006 9th International Conference on Information Fusion.
[14] Toshiyuki Tanaka,et al. Information Geometry of Mean-Field Approximation , 2000, Neural Computation.
[15] C. R. Rao,et al. Information and the Accuracy Attainable in the Estimation of Statistical Parameters , 1992 .
[16] Christopher T. J. Dodson,et al. An affine embedding of the gamma manifold , 2003 .
[17] Y. Bar-Shalom. Tracking and data association , 1988 .
[18] R. Kass,et al. Geometrical Foundations of Asymptotic Inference , 1997 .
[19] S.T. Smith,et al. Covariance, subspace, and intrinsic Crame/spl acute/r-Rao bounds , 2005, IEEE Transactions on Signal Processing.
[20] Shun-ichi Amari,et al. Natural Gradient Works Efficiently in Learning , 1998, Neural Computation.
[21] William Moran,et al. Sensor network performance evaluation in statistical manifolds , 2010, 2010 13th International Conference on Information Fusion.
[22] S. Amari,et al. Information geometry of estimating functions in semi-parametric statistical models , 1997 .
[23] Khadiga A. Arwini,et al. Information Geometry: Near Randomness and Near Independence , 2008 .
[24] S. Amari. Fisher information under restriction of Shannon information in multi-terminal situations , 1989 .
[25] Xavier Pennec,et al. Intrinsic Statistics on Riemannian Manifolds: Basic Tools for Geometric Measurements , 2006, Journal of Mathematical Imaging and Vision.
[26] Luc Florack,et al. Sticky vector fields, and other geometric measures on diffusion tensor images , 2008, 2008 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops.
[27] Leandro Pardo,et al. Statistical tests based on geodesic distances , 1995 .
[28] I. Holopainen. Riemannian Geometry , 1927, Nature.
[29] B. Efron. Defining the Curvature of a Statistical Problem (with Applications to Second Order Efficiency) , 1975 .
[30] Shun-ichi Amari,et al. Differential geometry of a parametric family of invertible linear systems—Riemannian metric, dual affine connections, and divergence , 1987, Mathematical systems theory.
[31] Francesco Gianfelici,et al. Methods of Information Geometry (Amari, S. and Nagaoka, H.; 2000) [Book review] , 2009, IEEE Transactions on Information Theory.
[32] S. Amari,et al. Dualistic differential geometry of positive definite matrices and its applications to related problems , 1996 .
[33] Shun-ichi Amari,et al. Methods of information geometry , 2000 .
[34] Shun-ichi Amari,et al. Information geometry of Boltzmann machines , 1992, IEEE Trans. Neural Networks.
[35] N. N. Chent︠s︡ov. Statistical decision rules and optimal inference , 1982 .
[36] F. Barbaresco. Innovative tools for radar signal processing Based on Cartan’s geometry of SPD matrices & Information Geometry , 2008, 2008 IEEE Radar Conference.
[37] B. Efron. THE GEOMETRY OF EXPONENTIAL FAMILIES , 1978 .
[38] Shun-ichi Amari,et al. Information geometry on hierarchy of probability distributions , 2001, IEEE Trans. Inf. Theory.
[39] William Moran,et al. Bearings-only tracking analysis via information geometry , 2010, 2010 13th International Conference on Information Fusion.
[40] Nassar H. Abdel-All,et al. Information geometry and statistical manifold , 2003 .
[41] E. Walter,et al. Robust experiment design via stochastic approximation , 1985 .
[42] S. Amari,et al. Information Geometry of α-Projection in Mean Field Approximation , 2004 .
[43] K. Nomizu,et al. Foundations of Differential Geometry , 1963 .
[44] B. O. Koopman. On distributions admitting a sufficient statistic , 1936 .
[45] Shun-ichi Amari. Information geometry of statistical inference - an overview , 2002, Proceedings of the IEEE Information Theory Workshop.