Analysis of Robust 3c2 Performance: Comparisons and Examples

This paper discusses the comparison between the two main approaches for analyzing 3-12 performance in the worst case over system uncertainty. One method takes the system impulse response as a starting point for the 3-12 criterion, the other focuses on stationary noise rejection with a deterministic interpretation. The paper reviews these methods and provides both theoretical and numerical comparisons between them.

[1]  P. Khargonekar,et al.  Mixed H/sub 2//H/sub infinity / control: a convex optimization approach , 1991 .

[2]  Stephen P. Boyd,et al.  Linear Matrix Inequalities in Systems and Control Theory , 1994 .

[3]  E. Feron Analysis of Robust H 2 Performance Using Multiplier Theory , 1997 .

[4]  J. Shamma Robust stability with time-varying structured uncertainty , 1994, IEEE Trans. Autom. Control..

[5]  D. Bernstein,et al.  LQG control with an H/sup infinity / performance bound: a Riccati equation approach , 1989 .

[6]  K. Poolla,et al.  Robust performance against time-varying structured perturbations , 1995, IEEE Trans. Autom. Control..

[7]  Edward F. Crawley,et al.  MACE: Anatomy of a Modern Control Experiment , 1996 .

[8]  Jonathan P. How,et al.  Robust controllers for the Middeck Active Control Experiment using Popov controller synthesis , 1993, IEEE Trans. Control. Syst. Technol..

[9]  John C. Doyle,et al.  Guaranteed margins for LQG regulators , 1978 .

[10]  P. Khargonekar,et al.  State-space solutions to standard H/sub 2/ and H/sub infinity / control problems , 1989 .

[11]  A. Stoorvogel The robust H2 control problem: a worst-case design , 1993, IEEE Trans. Autom. Control..

[12]  Andrew Packard,et al.  The complex structured singular value , 1993, Autom..

[13]  F. Paganini A set-based approach for white noise modeling , 1996, IEEE Trans. Autom. Control..

[14]  F. Paganini Sets and Constraints in the Analysis Of Uncertain Systems , 1996 .

[15]  Eric Feron,et al.  Estimating the conservatism of Popov's criterion , 1996 .

[16]  V. Yakubovich Nonconvex optimization problem: the infinite-horizon linear-quadratic control problem with quadratic constraints , 1992 .