Recent Progress in Microcrystalline Semiconductor Thin Films

[1]  G. Lucovsky,et al.  Optical and electrical properties of a-Si:H films grown by remote plasma enhanced chemical vapor deposition (RPECVD) , 1987 .

[2]  A. Matsuda,et al.  Wide-Rrange Control of Crystallite Size and Its Orientation in Glow-Discharge Deposited µc-Si:H , 1983 .

[3]  A. Poruba,et al.  Enhanced Optical Absorption in Microcrystalline Silicon , 1996 .

[4]  E. Taglauer,et al.  Surface hydrogen content and passivation of silicon deposited by plasma induced chemical vapor deposition from silane and the implications for the reaction mechanism , 1989 .

[5]  G. Lucovsky,et al.  An application of the statistical shift model to the inverted Meyer-Neldel, MN, relationship in heavily-doped microcrystalline Si, μc-Si , 1993 .

[6]  I. Shimizu Chemical reactions for propagation of Si-network , 1989 .

[7]  Kenjiro Nakamura,et al.  Roles of Atomic Hydrogen in Chemical Annealing , 1995 .

[8]  G. Parsons Selective deposition of silicon by plasma‐enhanced chemical vapor deposition using pulsed silane flow , 1991 .

[9]  H. Nguyen,et al.  Preparation of ultrathin microcrystalline silicon layers by atomic hydrogen etching of amorphous silicon and end‐point detection by real time spectroellipsometry , 1994 .

[10]  Juni-ici Hanna,et al.  Direct fabrication of SiGe crystallites on glass substrate: from nanocrystals to microcrystals , 1996 .

[11]  L. Ley,et al.  Optical properties and transport in microcrystalline silicon prepared at temperatures below 400 °C , 1981 .

[12]  Hybertsen,et al.  Absorption and emission of light in nanoscale silicon structures. , 1994, Physical review letters.

[13]  M. Kikuchi,et al.  Properties of heavily doped GDSi with low resistivity , 1979 .

[14]  A. Matsuda,et al.  Substrate dependence of initial growth of microcrystalline silicon in plasma‐enhanced chemical vapor deposition , 1996 .

[15]  A. Matsuda Formation kinetics and control of microcrystallite in μc-Si:H from glow discharge plasma , 1983 .

[16]  Santos,et al.  Light-enhanced hydrogen motion in a-Si:H. , 1991, Physical review letters.

[17]  J. Abelson,et al.  Subsurface hydrogenated amorphous silicon to μc‐hydrogenated silicon transformation during magnetron sputter deposition determined by spectroscopic ellipsometry , 1994 .

[18]  J. Boland,et al.  Bond Selectivity in Silicon Film Growth , 1992, Science.

[19]  D. Toet,et al.  Laser induced nucleation and growth of polycrystalline silicon , 1996 .

[20]  S. Yamasaki,et al.  Structural Study on Amorphous-Microcrystalline Mixed-Phase Si:H Films , 1981 .

[21]  S. Yamasaki,et al.  Electrical and Structural Properties of Phosphorous-Doped Glow-Discharge Si:F:H and Si:H Films , 1980 .

[22]  W. Spear,et al.  Substitutional doping of amorphous silicon , 1993 .

[23]  L. Ley,et al.  The one phonon Raman spectrum in microcrystalline silicon , 1981 .

[24]  S. Wagner,et al.  Amorphous silicon technology -- 1996 , 1996 .

[25]  B. Drévillon,et al.  Microcrystalline silicon growth by the layer-by-layer technique: long term evolution and nucleation mechanisms , 1996 .

[26]  A. Matsuda,et al.  Role of Hydrogen Atoms in the Formation Process of Hydrogenated Microcrystalline Silicon , 1990 .

[27]  M. Heintze,et al.  Surface controlled plasma deposition and etching of silicon near the chemical equilibrium , 1993 .

[28]  Lin-Wang Wang,et al.  Electronic Structure Pseudopotential Calculations of Large (.apprx.1000 Atoms) Si Quantum Dots , 1994 .

[29]  A. Matsuda,et al.  Plasma spectroscopy—Glow discharge deposition of hydrogenated amorphous silicon☆ , 1982 .

[30]  Zafar Iqbal,et al.  Raman scattering from hydrogenated microcrystalline and amorphous silicon , 1982 .

[31]  A. Asano Effects of hydrogen atoms on the network structure of hydrogenated amorphous and microcrystalline silicon thin films , 1990 .

[32]  S. Koynov,et al.  Correlation between structural, optical and electrical properties of μc-Si films , 1996 .

[33]  Photoluminescence from nanocrystallites embedded in hydrogenated amorphous silicon films prepared by plasma enhanced chemical vapor deposition , 1994 .

[34]  R. Collins,et al.  In situ ellipsometry of thin‐film deposition: Implications for amorphous and microcrystalline Si growth , 1989 .

[35]  A. Matsuda,et al.  Observation of Meyer-Neldel rule in extended energy regime using novel a-Si:H TFTs , 1996 .

[36]  Reinhard Carius,et al.  Improvement of grain size and deposition rate of microcrystalline silicon by use of very high frequency glow discharge , 1994 .

[37]  B. Schröder,et al.  Deposition of nanocrystalline silicon films (nc-Si:H) from a pure ECWR-SiH4 plasma , 1996 .

[38]  Raphael Tsu,et al.  Critical volume fraction of crystallinity for conductivity percolation in phosphorus‐doped Si:F:H alloys , 1982 .

[39]  Philippe M. Fauchet,et al.  The effects of microcrystal size and shape on the one phonon Raman spectra of crystalline semiconductors , 1986 .

[40]  S. Yamasaki,et al.  Proton nuclear magnetic resonance study on hydrogen incorporation in amorphous‐microcrystalline mixed‐phase hydrogenated silicon , 1984 .

[41]  G. Parsons,et al.  Selective Deposition and Bond Strain Relaxation in Silicon PECVD Using Time Modulated Silane Flow , 1992 .

[42]  A. Matsuda,et al.  In situ characterization of the growing a-Si:H surface by IR spectroscopy , 1991 .

[43]  W. Beyer,et al.  Electronic transport in hydrogenated amorphous silicon , 1983 .

[44]  S. Yamasaki,et al.  STM and Raman study of the evolution of the surface morphology in μc-Si:H , 1996 .

[45]  H. Nguyen,et al.  A comparison of the optical properties of ultrathin amorphous and crystalline silicon films , 1996 .

[46]  S. Vepřek,et al.  The preparation of thin layers of Ge and Si by chemical hydrogen plasma transport , 1968 .

[47]  N. Imajyo High rate deposition of μc-Si with plasma gun CVD , 1996 .