Microtubule tip-interacting proteins: a view from both ends.

Microtubule ends serve as sites of tubulin addition and removal, and at the same time play crucial roles in microtubule capture, stabilization and attachment to different cellular structures. Microtubule plus and minus-ends possess distinct structural and dynamic properties, and are recognized, bound and regulated by diverse factors. These include specific capping factors such as γ-tubulin, motors, such as plus-end and minus-end directed kinesins, highly specialized kinetochore-bound microtubule-associated proteins, and comet-making plus-end tracking proteins such as EB1 and its partners. Here, we provide an overview of microtubule tip-interacting proteins and the mechanisms responsible for their association with microtubule ends, and discuss the functional cross-talk between microtubule plus and minus-end binding factors.

[1]  Bruce F. McEwen,et al.  Contrasting models for kinetochore microtubule attachment in mammalian cells , 2010, Cellular and Molecular Life Sciences.

[2]  K. Vaughan,et al.  Evidence that an interaction between EB1 and p150(Glued) is required for the formation and maintenance of a radial microtubule array anchored at the centrosome. , 2002, Molecular biology of the cell.

[3]  G. Borisy,et al.  Detyrosinated (Glu) microtubules are stabilized by an ATP-sensitive plus-end cap. , 2000, Journal of cell science.

[4]  M. Bornens,et al.  Microtubule nucleation at the cis‐side of the Golgi apparatus requires AKAP450 and GM130 , 2009, The EMBO journal.

[5]  M. Takeichi,et al.  Anchorage of Microtubule Minus Ends to Adherens Junctions Regulates Epithelial Cell-Cell Contacts , 2008, Cell.

[6]  Stefan Westermann,et al.  The Dam1 kinetochore ring complex moves processively on depolymerizing microtubule ends , 2006, Nature.

[7]  E. Ralston,et al.  Reorganization of microtubule nucleation during muscle differentiation. , 2005, Cell motility and the cytoskeleton.

[8]  Marileen Dogterom,et al.  Force generation by dynamic microtubules. , 2005, Current opinion in cell biology.

[9]  A. Merdes,et al.  Nuclei of Non-Muscle Cells Bind Centrosome Proteins upon Fusion with Differentiating Myoblasts , 2009, PloS one.

[10]  Yixian Zheng,et al.  Nucleation of microtubule assembly by a γ-tubulin-containing ring complex , 1995, Nature.

[11]  J. Yates,et al.  Asymmetric CLASP-dependent nucleation of noncentrosomal microtubules at the trans-Golgi network. , 2007, Developmental cell.

[12]  B. Fontoura,et al.  The Nup107-160 complex and γ-TuRC regulate microtubule polymerization at kinetochores , 2010, Nature Cell Biology.

[13]  J. McIntosh,et al.  Lattice structure of cytoplasmic microtubules in a cultured Mammalian cell. , 2009, Journal of molecular biology.

[14]  R. Hawley,et al.  ATPase Cycle of the Nonmotile Kinesin NOD Allows Microtubule End Tracking and Drives Chromosome Movement , 2009, Cell.

[15]  C. Sunkel,et al.  γ-Tubulin ring complexes regulate microtubule plus end dynamics , 2009, The Journal of cell biology.

[16]  Franck Perez,et al.  Detection of GTP-Tubulin Conformation in Vivo Reveals a Role for GTP Remnants in Microtubule Rescues , 2008, Science.

[17]  A. Merdes,et al.  γ-tubulin complexes and microtubule organization , 2007 .

[18]  Anthony A. Hyman,et al.  Morphologically distinct microtubule ends in the mitotic centrosome of Caenorhabditis elegans , 2003, The Journal of cell biology.

[19]  I. Vernos,et al.  A Kinesin-like Motor Inhibits Microtubule Dynamic Instability , 2004, Science.

[20]  Timothy J Mitchison,et al.  EB1 targets to kinetochores with attached, polymerizing microtubules. , 2002, Molecular biology of the cell.

[21]  Andrew D. Franck,et al.  Cooperation of the Dam1 and Ndc80 kinetochore complexes enhances microtubule coupling and is regulated by aurora B , 2010, The Journal of cell biology.

[22]  C. Pellacani,et al.  Drosophila Dgt6 Interacts with Ndc80, Msps/XMAP215, and γ-Tubulin to Promote Kinetochore-Driven MT Formation , 2009, Current Biology.

[23]  Kurt Wüthrich,et al.  An EB1-Binding Motif Acts as a Microtubule Tip Localization Signal , 2009, Cell.

[24]  S. Howng,et al.  Characterization and Functional Aspects of Human Ninein Isoforms that Regulated by Centrosomal Targeting Signals and Evidence for Docking Sites to Direct Gamma-Tubulin , 2006, Cell cycle.

[25]  A. Hyman,et al.  Stu2p, the budding yeast member of the conserved Dis1/XMAP215 family of microtubule-associated proteins is a plus end–binding microtubule destabilizer , 2003, The Journal of cell biology.

[26]  J. M. Seguí-Simarro,et al.  Quantitative analysis of changes in spatial distribution and plus-end geometry of microtubules involved in plant-cell cytokinesis , 2005, Journal of Cell Science.

[27]  E. Nigg,et al.  Plk4-induced centriole biogenesis in human cells. , 2007, Developmental cell.

[28]  Bret Becker,et al.  TOGp regulates microtubule assembly and density during mitosis and contributes to chromosome directional instability. , 2009, Cell motility and the cytoskeleton.

[29]  Mohan L Gupta,et al.  Plus end-specific depolymerase activity of Kip3, a kinesin-8 protein, explains its role in positioning the yeast mitotic spindle , 2006, Nature Cell Biology.

[30]  E. Nigg,et al.  Control of Centriole Length by CPAP and CP110 , 2009, Current Biology.

[31]  Gary J. Brouhard,et al.  XMAP215 Is a Processive Microtubule Polymerase , 2008, Cell.

[32]  F. Gergely,et al.  CDK5RAP2 functions in centrosome to spindle pole attachment and DNA damage response , 2010, The Journal of cell biology.

[33]  E. O'Toole,et al.  The elegans of spindle assembly , 2010, Cellular and Molecular Life Sciences.

[34]  E. Nigg,et al.  A complex of two centrosomal proteins, CAP350 and FOP, cooperates with EB1 in microtubule anchoring. , 2005, Molecular biology of the cell.

[35]  E. Salmon,et al.  Vertebrate kinetochore protein architecture: protein copy number , 2010, The Journal of cell biology.

[36]  Jonathon Howard,et al.  Kinesin-8 Motors Act Cooperatively to Mediate Length-Dependent Microtubule Depolymerization , 2009, Cell.

[37]  Andrew D. Franck,et al.  The Ndc80 Kinetochore Complex Forms Load-Bearing Attachments to Dynamic Microtubule Tips via Biased Diffusion , 2009, Cell.

[38]  D. Agard,et al.  Structure of the γ-tubulin ring complex: a template for microtubule nucleation , 2000, Nature Cell Biology.

[39]  A. Hyman,et al.  EB1 Recognizes the Nucleotide State of Tubulin in the Microtubule Lattice , 2009, PloS one.

[40]  E. Fuchs,et al.  Desmoplakin: an unexpected regulator of microtubule organization in the epidermis , 2007, The Journal of cell biology.

[41]  A. Spektor,et al.  Cep97 and CP110 Suppress a Cilia Assembly Program , 2007, Cell.

[42]  Tobias A. Knoch,et al.  Dynamic behavior of GFP–CLIP-170 reveals fast protein turnover on microtubule plus ends , 2008, The Journal of cell biology.

[43]  G. C. Rogers,et al.  A multicomponent assembly pathway contributes to the formation of acentrosomal microtubule arrays in interphase Drosophila cells. , 2008, Molecular biology of the cell.

[44]  D. Mastronarde,et al.  Fibrils Connect Microtubule Tips with Kinetochores: A Mechanism to Couple Tubulin Dynamics to Chromosome Motion , 2008, Cell.

[45]  R. Qi,et al.  Interaction of CDK5RAP2 with EB1 to track growing microtubule tips and to regulate microtubule dynamics. , 2009, Molecular biology of the cell.

[46]  Liedewij Laan,et al.  Reconstitution of a microtubule plus-end tracking system in vitro , 2007, Nature.

[47]  David Pellman,et al.  Microtubule “Plus-End-Tracking Proteins” The End Is Just the Beginning , 2001, Cell.

[48]  T. Mitchison,et al.  Microtubule polymerization dynamics. , 1997, Annual review of cell and developmental biology.

[49]  R. Ohi,et al.  The Kinesin-8 Kif18A Dampens Microtubule Plus-End Dynamics , 2010, Current Biology.

[50]  Anna Akhmanova,et al.  Tracking the ends: a dynamic protein network controls the fate of microtubule tips , 2008, Nature Reviews Molecular Cell Biology.

[51]  T. Stearns,et al.  Adenomatous polyposis coli and EB1 localize in close proximity of the mother centriole and EB1 is a functional component of centrosomes , 2004, Journal of Cell Science.

[52]  J. Vogel,et al.  Gamma-tubulin is required for proper recruitment and assembly of Kar9-Bim1 complexes in budding yeast. , 2006, Molecular biology of the cell.

[53]  Jonathon Howard,et al.  The depolymerizing kinesin MCAK uses lattice diffusion to rapidly target microtubule ends , 2006, Nature.

[54]  T. Stearns,et al.  Microtubule-organizing centres: a re-evaluation , 2007, Nature Reviews Molecular Cell Biology.

[55]  Daniel J. Anderson,et al.  Cik1 Targets the Minus-End Kinesin Depolymerase Kar3 to Microtubule Plus Ends , 2005, Current Biology.

[56]  Stefan Westermann,et al.  The Dam1 complex confers microtubule plus end–tracking activity to the Ndc80 kinetochore complex , 2010, The Journal of cell biology.

[57]  Anthony A. Hyman,et al.  Yeast kinesin-8 depolymerizes microtubules in a length-dependent manner , 2006, Nature Cell Biology.

[58]  P. Meraldi,et al.  Finding the middle ground: how kinetochores power chromosome congression , 2010, Cellular and Molecular Life Sciences.

[59]  E. Salmon,et al.  Mechanisms of force generation by end-on kinetochore-microtubule attachments. , 2010, Current opinion in cell biology.

[60]  Niels Galjart,et al.  Plus-End-Tracking Proteins and Their Interactions at Microtubule Ends , 2010, Current Biology.

[61]  T. Davis,et al.  Phosphoregulation and depolymerization-driven movement of the Dam1 complex do not require ring formation , 2008, Nature Cell Biology.

[62]  Jan Pieter Abrahams,et al.  Microtubule plus-end conformations and dynamics in the periphery of interphase mouse fibroblasts. , 2008, Molecular biology of the cell.

[63]  I. Vernos,et al.  The TACC proteins: TACC-ling microtubule dynamics and centrosome function. , 2008, Trends in cell biology.

[64]  J. McIntosh,et al.  The Dam1 ring binds microtubules strongly enough to be a processive as well as energy-efficient coupler for chromosome motion , 2008, Proceedings of the National Academy of Sciences.

[65]  Tomoyuki U. Tanaka,et al.  Kinetochores Generate Microtubules with Distal Plus Ends: Their Roles and Limited Lifetime in Mitosis , 2010, Developmental cell.

[66]  R. Wollman,et al.  Genes Required for Mitotic Spindle Assembly in Drosophila S2 Cells , 2007, Science.

[67]  J. Yates,et al.  The human kinetochore Ska1 complex facilitates microtubule depolymerization-coupled motility. , 2009, Developmental cell.

[68]  D. Hackney,et al.  The EB1 Homolog Mal3 Stimulates the ATPase of the Kinesin Tea2 by Recruiting It to the Microtubule* , 2005, Journal of Biological Chemistry.

[69]  D. Liakopoulos,et al.  Ubiquitylation Regulates Interactions of Astral Microtubules with the Cleavage Apparatus , 2010, Current Biology.

[70]  E. Karsenti,et al.  XMAP215-EB1 interaction is required for proper spindle assembly and chromosome segregation in Xenopus egg extract. , 2009, Molecular biology of the cell.

[71]  D. Mastronarde,et al.  Organization of interphase microtubules in fission yeast analyzed by electron tomography. , 2007, Developmental cell.

[72]  A. Tassin,et al.  Procentriole assembly revealed by cryo‐electron tomography , 2010, The EMBO journal.

[73]  P. Tittmann,et al.  The Schizosaccharomyces pombe EB1 Homolog Mal3p Binds and Stabilizes the Microtubule Lattice Seam , 2006, Cell.

[74]  J. McIntosh,et al.  Kinesin-8 from fission yeast: a heterodimeric, plus-end-directed motor that can couple microtubule depolymerization to cargo movement. , 2008, Molecular biology of the cell.

[75]  L. Amos,et al.  Mal3, the Schizosaccharomyces pombe homolog of EB1, changes the microtubule lattice , 2008, Nature Structural &Molecular Biology.

[76]  J. McIntosh,et al.  Different assemblies of the DAM1 complex follow shortening microtubules by distinct mechanisms , 2008, Proceedings of the National Academy of Sciences.