Hot electrons do the impossible: plasmon-induced dissociation of H2 on Au.

Heterogeneous catalysis is of paramount importance in chemistry and energy applications. Catalysts that couple light energy into chemical reactions in a directed, orbital-specific manner would greatly reduce the energy input requirements of chemical transformations, revolutionizing catalysis-driven chemistry. Here we report the room temperature dissociation of H(2) on gold nanoparticles using visible light. Surface plasmons excited in the Au nanoparticle decay into hot electrons with energies between the vacuum level and the work function of the metal. In this transient state, hot electrons can transfer into a Feshbach resonance of an H(2) molecule adsorbed on the Au nanoparticle surface, triggering dissociation. We probe this process by detecting the formation of HD molecules from the dissociations of H(2) and D(2) and investigate the effect of Au nanoparticle size and wavelength of incident light on the rate of HD formation. This work opens a new pathway for controlling chemical reactions on metallic catalysts.

[1]  Peter Nordlander,et al.  Graphene-antenna sandwich photodetector. , 2012, Nano letters.

[2]  Ming Lun Tseng,et al.  Plasmon inducing effects for enhanced photoelectrochemical water splitting: X-ray absorption approach to electronic structures. , 2012, ACS nano.

[3]  Peter Nordlander,et al.  Light-induced release of DNA from gold nanoparticles: nanoshells and nanorods. , 2011, Journal of the American Chemical Society.

[4]  R. Mcweeny The electron affinity of H2 : a valence bond study , 1992 .

[5]  Suljo Linic,et al.  Visible-light-enhanced catalytic oxidation reactions on plasmonic silver nanostructures. , 2011, Nature chemistry.

[6]  Bonn,et al.  Phonon- versus electron-mediated desorption and oxidation of CO on Ru(0001) , 1999, Science.

[7]  Michael Vollmer,et al.  Optical properties of metal clusters , 1995 .

[8]  Hyungtak Seo,et al.  Surface plasmon-driven hot electron flow probed with metal-semiconductor nanodiodes. , 2011, Nano letters.

[9]  Nobuo Tanaka,et al.  Atomic origins of the high catalytic activity of nanoporous gold. , 2012, Nature materials.

[10]  Hongxing Xu,et al.  A novel application of plasmonics: plasmon-driven surface-catalyzed reactions. , 2012, Small.

[11]  G. Stucky,et al.  Plasmonic photoanodes for solar water splitting with visible light. , 2012, Nano letters.

[12]  Florian Libisch,et al.  Origin of the energy barrier to chemical reactions of O2 on Al(111): evidence for charge transfer, not spin selection. , 2012, Physical review letters.

[13]  S. Linic,et al.  Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy. , 2011, Nature materials.

[14]  J. Dionne,et al.  Quantum plasmon resonances of individual metallic nanoparticles , 2012, Nature.

[15]  Claus H. Christensen,et al.  Catalytic activity of Au nanoparticles , 2007 .

[16]  R. Rosenfeld Nature , 2009, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.

[17]  H. Freund,et al.  Photochemistry on Metal Nanoparticles , 2006 .

[18]  P. Hu,et al.  Molecular Heterogeneous Catalysis. A Conceptual and Computational Approach. Herausgegeben von Rutger A. van Santen und Matthew Neurock. , 2007 .

[19]  Chen Huang,et al.  Quantum mechanical embedding theory based on a unique embedding potential. , 2011, The Journal of chemical physics.

[20]  Suljo Linic,et al.  Water splitting on composite plasmonic-metal/semiconductor photoelectrodes: evidence for selective plasmon-induced formation of charge carriers near the semiconductor surface. , 2011, Journal of the American Chemical Society.

[21]  Martin Wolf,et al.  Femtochemistry at metal surfaces: nonadiabatic reaction dynamics. , 2006, Chemical reviews.

[22]  Joseph Shappir,et al.  Locally oxidized silicon surface-plasmon Schottky detector for telecom regime. , 2011, Nano letters.

[23]  G. Gerber,et al.  Surface plasmon dynamics in silver nanoparticles studied by femtosecond time-resolved photoemission. , 2000, Physical review letters.

[24]  W. Steinmann,et al.  Plasma Resonance in the Photoemission of Silver , 1968 .

[25]  R. F. Howe,et al.  The effect of gold loading and particle size on photocatalytic hydrogen production from ethanol over Au/TiO₂ nanoparticles. , 2011, Nature chemistry.

[26]  Robert E. Walkup,et al.  Fundamental Mechanisms of Desorption and Fragmentation Induced by Electronic Transitions at Surfaces , 1989 .

[27]  Heng Ji,et al.  Hydrogen stabilization of metallic vanadium dioxide in single-crystal nanobeams , 2012 .

[28]  H. García,et al.  Influence of excitation wavelength (UV or visible light) on the photocatalytic activity of titania containing gold nanoparticles for the generation of hydrogen or oxygen from water. , 2011, Journal of the American Chemical Society.

[29]  P. Ajayan,et al.  Plasmon-induced doping of graphene. , 2012, ACS nano.

[30]  Naomi J. Halas,et al.  Photodetection with Active Optical Antennas , 2011, Science.

[31]  S. Cronin,et al.  Plasmon resonant enhancement of carbon monoxide catalysis. , 2010, Nano letters.

[32]  Núria López,et al.  On the origin of the catalytic activity of gold nanoparticles for low-temperature CO oxidation , 2004 .

[33]  Prathamesh Pavaskar,et al.  Photocatalytic Conversion of CO2 to Hydrocarbon Fuels via Plasmon-Enhanced Absorption and Metallic Interband Transitions , 2011 .

[34]  Plasmon enhanced solar-to-fuel energy conversion. , 2011, Nano letters.

[35]  W. Ho,et al.  REACTIONS AT METAL SURFACES INDUCED BY FEMTOSECOND LASERS, TUNNELING ELECTRONS, AND HEATING , 1996 .

[36]  J. K. Chen,et al.  A semiclassical two-temperature model for ultrafast laser heating , 2006 .

[37]  R. W. Christy,et al.  Optical Constants of the Noble Metals , 1972 .

[38]  J. Endriz,et al.  Surface-Plasmon-One-Electron Decay and its Observation in Photoemission , 1970 .

[39]  Zhi Wei Seh,et al.  Janus Au‐TiO2 Photocatalysts with Strong Localization of Plasmonic Near‐Fields for Efficient Visible‐Light Hydrogen Generation , 2012, Advanced materials.

[40]  S. Linic,et al.  Oxidation catalysis by oxide-supported Au nanostructures: the role of supports and the effect of external conditions. , 2006, Physical review letters.

[41]  C. Wöll,et al.  Molecular beam translational spectroscopy of physisorption bound states of molecules on metal surfaces. I. HD on Cu(111) and Au(111) single crystal surfaces , 1986 .

[42]  Gadzuk Jw,et al.  Resonance-assisted hot electron femtochemistry at surfaces. , 1996 .

[43]  Mostafa A. El-Sayed,et al.  Electron dynamics in gold and gold–silver alloy nanoparticles: The influence of a nonequilibrium electron distribution and the size dependence of the electron–phonon relaxation , 1999 .

[44]  A. Bleloch,et al.  Three-dimensional atomic-scale structure of size-selected gold nanoclusters , 2008, Nature.

[45]  A. Lösch Nano , 2012, Ortsregister.

[46]  许旱峤,et al.  Kirk-Othmer Encyclopedia of Chemical Technology数据库介绍及实例 , 2007 .

[47]  J. W. Gadzuk Hot-electron femtochemistry at surfaces: on the role of multiple electron processes in desorption , 2000 .

[48]  Isao Nakamura,et al.  Hydrogen dissociation by gold clusters. , 2009, Angewandte Chemie.

[49]  J. Nørskov,et al.  Why gold is the noblest of all the metals , 1995, Nature.

[50]  E. Arakawa,et al.  Photoacoustic observation of nonradiative decay of surface plasmons in silver , 1981 .