PTF11iqb: cool supergiant mass-loss that bridges the gap between Type IIn and normal supernovae

The supernova (SN) PTF11iqb was initially classified as a Type IIn event caught very early after explosion. It showed narrow Wolf–Rayet (WR) spectral features on day 2 (as in SN 1998S and SN 2013cu), but the narrow emission weakened quickly and the spectrum morphed to resemble Types II-L and II-P. At late times, Hα exhibited a complex, multipeaked profile reminiscent of SN 1998S. In terms of spectroscopic evolution, we find that PTF11iqb was a near twin of SN 1998S, although with somewhat weaker interaction with circumstellar material (CSM) at early times, and stronger interaction at late times. We interpret the spectral changes as caused by early interaction with asymmetric CSM that is quickly (by day 20) enveloped by the expanding SN ejecta photosphere, but then revealed again after the end of the plateau when the photosphere recedes. The light curve can be matched with a simple model for CSM interaction (with a mass-loss rate of roughly 10^(−4) M_⊙ yr^(−1)) added to the light curve of a normal SN II-P. The underlying plateau requires a progenitor with an extended hydrogen envelope like a red supergiant at the moment of explosion, consistent with the slow wind speed (<80 km s^(−1)) inferred from narrow Hα emission. The cool supergiant progenitor is significant because PTF11iqb showed WR features in its early spectrum – meaning that the presence of such WR features does not necessarily indicate a WR-like progenitor. Overall, PTF11iqb bridges SNe IIn with weaker pre-SN mass-loss seen in SNe II-L and II-P, implying a continuum between these types.

[1]  A. Gal-yam Luminous Supernovae , 2012, Science.

[2]  Alexei V. Filippenko,et al.  Optical spectra of supernovae , 1997 .

[3]  William H. Lee,et al.  THE TYPE IIb SUPERNOVA 2013df AND ITS COOL SUPERGIANT PROGENITOR , 2013, 1312.3984.

[4]  A. V. Filippenko,et al.  THE IMPORTANCE OF ATMOSPHERIC DIFFERENTIAL REFRACTION IN SPECTROPHOTOMETRY. , 1982 .

[5]  S. E. Persson,et al.  Carnegie Supernova Project: Observations of Type IIn supernovae ⋆ , 2013, 1304.3038.

[6]  E. al.,et al.  Optical and infrared photometry of the Type IIn SN 1998S: days 11–146 , 2000, astro-ph/0006080.

[7]  M. Sullivan,et al.  The Palomar Transient Factory Photometric Calibration , 2011, 1112.4851.

[8]  I. Hook,et al.  The host galaxies of Type Ia supernovae discovered by the Palomar Transient Factory , 2013, 1311.6344.

[9]  P. Chandra,et al.  ELEVEN YEARS OF RADIO MONITORING OF THE TYPE IIn SUPERNOVA SN 1995N , 2008, 0809.2810.

[10]  Harland W. Epps,et al.  THE KECK LOW-RESOLUTION IMAGING SPECTROMETER , 1995 .

[11]  Nathan Smith Mass Loss: Its Effect on the Evolution and Fate of High-Mass Stars , 2014 .

[12]  M. J. Page,et al.  Photometric calibration of the Swift ultraviolet/optical telescope , 2007, 0708.2259.

[13]  R. Kirshner,et al.  LATE-TIME OPTICAL EMISSION FROM CORE-COLLAPSE SUPERNOVAE , 2012, 1203.0006.

[14]  R. Chevalier,et al.  Emission from circumstellar interaction in normal Type II supernovae , 1994 .

[15]  E. Quataert,et al.  SETTING THE STAGE FOR CIRCUMSTELLAR INTERACTION IN CORE-COLLAPSE SUPERNOVAE. II. WAVE-DRIVEN MASS LOSS IN SUPERNOVA PROGENITORS , 2013, 1308.5978.

[16]  J. Baldwin,et al.  Photometric and spectroscopic observations of SN 1990E in NGC 1035 - Observational constraints for models of type II supernovae , 1993 .

[17]  Optical and infrared spectroscopy of the type IIn SN 1998S: days 3–127 , 2000, astro-ph/0011340.

[18]  E. Ofek,et al.  PRECURSORS PRIOR TO TYPE IIn SUPERNOVA EXPLOSIONS ARE COMMON: PRECURSOR RATES, PROPERTIES, AND CORRELATIONS , 2014, 1401.5468.

[19]  R. Foley,et al.  CORONAL LINES AND DUST FORMATION IN SN 2005ip: NOT THE BRIGHTEST, BUT THE HOTTEST TYPE IIn SUPERNOVA , 2008, 0809.5079.

[20]  Detailed analysis of early to late-time spectra of supernova 1993j , 2000, astro-ph/0006264.

[21]  E. O. Ofek,et al.  Automating Discovery and Classification of Transients and Variable Stars in the Synoptic Survey Era , 2011, 1106.5491.

[22]  An optimal hydrodynamic model for the normal type IIP supernova 1999em , 2006, astro-ph/0609642.

[23]  P. Stetson DAOPHOT: A COMPUTER PROGRAM FOR CROWDED-FIELD STELLAR PHOTOMETRY , 1987 .

[24]  Carnegie,et al.  A Wolf–Rayet-like progenitor of SN 2013cu from spectral observations of a stellar wind , 2014, Nature.

[25]  D. A. García-Hernández,et al.  THE TENTH DATA RELEASE OF THE SLOAN DIGITAL SKY SURVEY: FIRST SPECTROSCOPIC DATA FROM THE SDSS-III APACHE POINT OBSERVATORY GALACTIC EVOLUTION EXPERIMENT , 2013, 1307.7735.

[26]  Paul S. Smith,et al.  Multi-epoch spectropolarimetry of SN 2009ip: direct evidence for aspherical circumstellar material , 2014, 1403.4240.

[27]  S. E. Woosley,et al.  Pulsational pair instability as an explanation for the most luminous supernovae , 2007, Nature.

[28]  Oxford,et al.  Exploring the Optical Transient Sky with the Palomar Transient Factory , 2009, 0906.5355.

[29]  E. Livne,et al.  Type II-Plateau supernova radiation: dependences on progenitor and explosion properties , 2013, 1305.3386.

[30]  B. Balick,et al.  The WR+OB Progenitor RY Scuti: Intensive Spectroscopy of Its Compact Double-Ring Nebula , 2002 .

[31]  C. Smith,et al.  THE MOUNT LAGUNA OBSERVATORY OF SAN DIEGO COLLEGE , 1969 .

[32]  Ryan Chornock,et al.  SN 2006gy: Discovery of the Most Luminous Supernova Ever Recorded, Powered by the Death of an Extremely Massive Star like η Carinae , 2006, astro-ph/0612617.

[33]  D. Frail,et al.  X-RAY EMISSION FROM SUPERNOVAE IN DENSE CIRCUMSTELLAR MATTER ENVIRONMENTS: A SEARCH FOR COLLISIONLESS SHOCKS , 2012, 1206.0748.

[34]  Adam A. Miller,et al.  TYPE Ia SUPERNOVAE STRONGLY INTERACTING WITH THEIR CIRCUMSTELLAR MEDIUM , 2013, Proceedings of the International Astronomical Union.

[35]  M. Turatto,et al.  Photometry and Spectroscopy of the Type IIP SN 1999em from Outburst to Dust Formation , 2003 .

[36]  W. Arnett,et al.  PREPARING FOR AN EXPLOSION: HYDRODYNAMIC INSTABILITIES AND TURBULENCE IN PRESUPERNOVAE , 2013, 1307.5035.

[37]  Thomas P. O'Brien,et al.  MODS: optical design for a multi-object dual spectrograph , 2000, Astronomical Telescopes and Instrumentation.

[38]  S. E. Persson,et al.  MULTI-WAVELENGTH OBSERVATIONS OF THE ENDURING TYPE IIn SUPERNOVAE 2005ip AND 2006jd , 2012, 1206.5575.

[39]  N. Smith A model for the 19th century eruption of Eta Carinae: CSM interaction like a scaled-down Type IIn Supernova , 2012, 1209.6155.

[40]  E. O. Ofek,et al.  SUPERNOVA PTF 09UJ: A POSSIBLE SHOCK BREAKOUT FROM A DENSE CIRCUMSTELLAR WIND , 2010, 1009.5378.

[41]  P. Crowther,et al.  Physical Properties of Wolf-Rayet Stars , 2006, astro-ph/0610356.

[42]  Marco Bonati,et al.  The Automated Palomar 60 Inch Telescope , 2006, astro-ph/0608323.

[43]  N. Smith,et al.  Episodic mass loss in binary evolution to the Wolf–Rayet phase: Keck and HST proper motions of RY Scuti’s nebula★ , 2011, 1105.2329.

[44]  R. Kirshner,et al.  Late-Time Optical and Ultraviolet Spectra of SN 1979C and SN 1980K , 1998, astro-ph/9810407.

[45]  SN 2006tf: Precursor Eruptions and the Optically Thick Regime of Extremely Luminous Type IIn Supernovae , 2008, 0804.0042.

[46]  N. Smith,et al.  SN2010jp (PTF10aaxi): A Jet-Driven Type II Supernova , 2011, 1108.2868.

[47]  D. Fox,et al.  CALTECH CORE-COLLAPSE PROJECT (CCCP) OBSERVATIONS OF TYPE IIn SUPERNOVAE: TYPICAL PROPERTIES AND IMPLICATIONS FOR THEIR PROGENITOR STARS , 2010, 1010.2689.

[48]  M. Langlois,et al.  Society of Photo-Optical Instrumentation Engineers , 2005 .

[49]  M. Cantiello,et al.  EVOLUTION OF MASSIVE STARS WITH PULSATION-DRIVEN SUPERWINDS DURING THE RED SUPERGIANT PHASE , 2010, 1005.4925.

[50]  P. Dokkum Cosmic-Ray Rejection by Laplacian Edge Detection , 2001, astro-ph/0108003.

[51]  N. Smith,et al.  The Crab nebula and the class of Type IIn-P supernovae caused by sub-energetic electron-capture explosions , 2013, 1304.0689.

[52]  D. Frail,et al.  A MULTI-WAVELENGTH INVESTIGATION OF THE RADIO-LOUD SUPERNOVA PTF11qcj AND ITS CIRCUMSTELLAR ENVIRONMENT , 2013, 1307.2366.

[53]  A. Gal-yam,et al.  A massive hypergiant star as the progenitor of the supernova SN 2005gl , 2009, Nature.

[54]  A. Ginsburg,et al.  THE PECULIAR BALMER DECREMENT OF SN 2009ip: CONSTRAINTS ON CIRCUMSTELLAR GEOMETRY , 2012, 1211.4577.

[55]  W. Arnett,et al.  TOWARD REALISTIC PROGENITORS OF CORE-COLLAPSE SUPERNOVAE , 2011, 1101.5646.

[56]  Wei Zheng,et al.  THE PROGENITOR OF SUPERNOVA 2011dh HAS VANISHED , 2013, 1305.3436.

[57]  Detection of CO and Dust Emission in Near-Infrared Spectra of SN 1998S , 1999, astro-ph/9912433.

[58]  L. Ho,et al.  Berkeley Supernova Ia Program – I. Observations, data reduction and spectroscopic sample of 582 low-redshift Type Ia supernovae , 2012, 1202.2128.

[59]  Jessica R. Lu,et al.  DISCOVERY OF PRECURSOR LUMINOUS BLUE VARIABLE OUTBURSTS IN TWO RECENT OPTICAL TRANSIENTS: THE FITFULLY VARIABLE MISSING LINKS UGC 2773-OT AND SN 2009ip , 2009, 0909.4792.

[60]  Ronnie Killough,et al.  The Swift Ultra-Violet/Optical Telescope , 2001 .

[61]  S. E. Woosley,et al.  How Massive Single Stars End Their Life , 2003 .

[62]  A. Gal-yam,et al.  WISeREP—An Interactive Supernova Data Repository , 2012, 1204.1891.

[63]  D. M. Bramich,et al.  A new algorithm for difference image analysis , 2008, 0802.1273.

[64]  John A. Nousek,et al.  ULTRAVIOLET LIGHT CURVES OF SUPERNOVAE WITH THE SWIFT ULTRAVIOLET/OPTICAL TELESCOPE , 2009 .

[65]  Alison L. Coil,et al.  The DEIMOS spectrograph for the Keck II Telescope: integration and testing , 2003, SPIE Astronomical Telescopes + Instrumentation.

[66]  Nathan Smith,et al.  RED SUPERGIANTS AS POTENTIAL TYPE IIn SUPERNOVA PROGENITORS: SPATIALLY RESOLVED 4.6 μm CO EMISSION AROUND VY CMa AND BETELGEUSE , 2008, 0811.3037.

[67]  D. Fox,et al.  On the Progenitor of SN 2005gl and the Nature of Type IIn Supernovae , 2006, astro-ph/0608029.

[68]  Adam A. Miller,et al.  A MASSIVE PROGENITOR OF THE LUMINOUS TYPE IIn SUPERNOVA 2010jl , 2010, 1011.4150.

[69]  Richard Dekany,et al.  The 12K×8K CCD mosaic camera for the Palomar Transient Factory , 2008, Astronomical Telescopes + Instrumentation.

[70]  Chris L. Fryer,et al.  SN 2010jl: OPTICAL TO HARD X-RAY OBSERVATIONS REVEAL AN EXPLOSION EMBEDDED IN A TEN SOLAR MASS COCOON , 2013, 1307.2247.

[71]  Xu Zhou,et al.  TYPE IIn SUPERNOVA SN 2010jl: OPTICAL OBSERVATIONS FOR OVER 500 DAYS AFTER EXPLOSION , 2012, 1208.6078.

[72]  J. Sollerman,et al.  Supernova spectra below strong circumstellar interaction , 2013, 1306.1549.

[73]  Kelsey I. Clubb,et al.  The Unprecedented Third Outburst of SN 2009ip: A Luminous Blue Variable Becomes a Supernova , 2012, 1209.6320.

[74]  O. Stahl,et al.  A Spectroscopic Study of Mass Outflows in the Interacting Binary RY Scuti , 2007, 0706.3206.

[75]  R. Chevalier,et al.  X-RAYS FROM SUPERNOVA SHOCKS IN DENSE MASS LOSS , 2012, 1201.5581.

[76]  N. Smith,et al.  On the Role of the WNH Phase in the Evolution of Very Massive Stars: Enabling the LBV Instability with Feedback , 2008, 0802.1742.

[77]  T. Matheson,et al.  SN 2011ht: confirming a class of interacting supernovae with plateau light curves (Type IIn-P) , 2012, 1209.0821.

[78]  T. Matheson,et al.  Submitted to The Astrophysical Journal Evidence for Asphericity in the Type IIn Supernova 1998S , 1999 .

[79]  Mohan Ganeshalingam,et al.  SN 2006jc: A Wolf-Rayet Star Exploding in a Dense He-rich Circumstellar Medium , 2006, astro-ph/0612711.

[80]  R. Chornock,et al.  The Distance to SN 1999em in NGC 1637 from the Expanding Photosphere Method , 2001, astro-ph/0109535.

[81]  Moscow,et al.  On the source of the late-time infrared luminosity of SN 1998S and other Type II supernovae , 2004, astro-ph/0404533.

[82]  E. Ofek,et al.  Probing cosmic ray ion acceleration with radio-submm and gamma-ray emission from interaction-powered supernovae , 2013, 1311.6778.

[83]  Ernest E. Croner,et al.  The Palomar Transient Factory: System Overview, Performance, and First Results , 2009, 0906.5350.

[84]  R. Chevalier,et al.  Circumstellar Interaction in SN 1993J , 1994, astro-ph/9406054.

[85]  Ehud Nakar,et al.  OPTICAL TO X-RAY SUPERNOVA LIGHT CURVES FOLLOWING SHOCK BREAKOUT THROUGH A THICK WIND , 2012, 1202.3437.

[86]  J. Prieto,et al.  SN 2009ip and SN 2010mc: core-collapse Type IIn supernovae arising from blue supergiants , 2013, 1308.0112.

[87]  J. Munn,et al.  The USNO-B Catalog , 2002, astro-ph/0210694.

[88]  E. Ofek,et al.  An outburst from a massive star 40 days before a supernova explosion , 2013, Nature.

[89]  Arlo U. Landolt,et al.  UBVRI Photometric Standard Stars in the Magnitude Range 11 , 1992 .

[90]  L. Ho,et al.  Optical Spectroscopy of Supernova 1993J During Its First 2500 Days , 2000, astro-ph/0006263.

[91]  E. Ofek,et al.  The rising light curves of Type Ia supernovae , 2014, 1411.1064.

[92]  E. Ofek,et al.  SN 2009ip: CONSTRAINTS ON THE PROGENITOR MASS-LOSS RATE , 2013, 1303.3894.

[93]  G. Shaviv,et al.  INSTABILITIES IN HIGHLY EVOLVED STELLAR MODELS. , 1967 .

[94]  N. Chugai Broad emission lines from the opaque electron‐scattering environment of SN 1998S , 2001, astro-ph/0106234.

[95]  E. al.,et al.  The Sloan Digital Sky Survey: Technical summary , 2000, astro-ph/0006396.

[96]  J. B. Oke,et al.  Secondary standard stars for absolute spectrophotometry , 1983 .

[97]  R. Foley,et al.  A sample of Type II-L supernovae , 2014, 1409.1536.

[98]  Ryan Chornock,et al.  Observed Fractions of Core-Collapse Supernova Types and Initial Masses of their Single and Binary Progenitor Stars , 2010, 1006.3899.

[99]  A. Drake,et al.  DETECTION OF AN OUTBURST ONE YEAR PRIOR TO THE EXPLOSION OF SN 2011ht , 2013, 1309.4695.

[100]  James E. Gunn,et al.  AN EFFICIENT LOW RESOLUTION AND MODERATE RESOLUTION SPECTROGRAPH FOR THE HALE TELESCOPE , 1982 .

[101]  R. Foley,et al.  SPECTRAL EVOLUTION OF THE EXTRAORDINARY TYPE IIn SUPERNOVA 2006gy , 2009, 0906.2200.

[102]  P. McCarthy,et al.  Hα SPECTRAL DIVERSITY OF TYPE II SUPERNOVAE: CORRELATIONS WITH PHOTOMETRIC PROPERTIES , 2014, 1403.7089.

[103]  E. Quataert,et al.  Wave‐driven mass loss in the last year of stellar evolution: setting the stage for the most luminous core‐collapse supernovae , 2012, 1202.5036.

[104]  J. Groh Early-time spectra of supernovae and their precursor winds: the luminous blue variable/yellow hypergiant progenitor of SN 2013cu , 2014, 1408.5397.

[105]  A. Filippenko,et al.  EARLY EMISSION FROM THE TYPE IIn SUPERNOVA 1998S AT HIGH RESOLUTION , 2014, 1408.1404.

[106]  R. Foley,et al.  Dust Formation and He II λ4686 Emission in the Dense Shell of the Peculiar Type Ib Supernova 2006jc , 2007, 0704.2249.

[107]  E. Schlegel A new subclass of Type II supernovae , 1990 .

[108]  N. Smith,et al.  Supernova 1998S at 14 years postmortem: continuing circumstellar interaction and dust formation , 2012, 1204.1610.

[109]  S. Smartt,et al.  The Disappearance of the Progenitors of Supernovae 1993J and 2003gd , 2009, Science.

[110]  D. Schlegel,et al.  Maps of Dust Infrared Emission for Use in Estimation of Reddening and Cosmic Microwave Background Radiation Foregrounds , 1998 .