A control structure for the autonomous locomotion on rough terrain with a hexapod robot

A motion control structure used for autonomous walking on uneven terrain with a hexapod biomimetic robot is proposed based on function-behavior-integration. In the gait planning level, a set of local rules operating between adjacent legs were put forward and the theory of finite state machine was employed to model them; further, a distributed network of local rules was constructed to adaptively adjust the fluctuation of inter-leg phase sequence. While in the leg-end trajectory planning level, combined polynomial curve was adopted to generate foot trajectory, which could realize real-time control of robot posture and accommodation to terrain conditions. In the simulation experiments, adaptive regulation of inter-leg phase sequence, omnidirectional locomotion and ground accommodation were realized, moreover, statically stable free gait was obtained simultaneously, which provided hexapod robot with the capability of walking on slightly irregular terrain reliably and expeditiously.