Contactless electroreflectance of InGaN layers with indium content <=36%: The surface band bending, band gap bowing, and Stokes shift issues

Contactless electroreflectance (CER) supported by photoluminescence (PL) has been applied to study (i) the surface band bending, (ii) the band gap bowing, and (iii) the Stokes shift for InGaN layers grown by molecular beam epitaxy with 0.14≤In≤0.36. The type of surface band bending has been investigated on the basis of the shape of CER resonance. It has been found that the surface band bending changes from n-type for layers with low indium content (In<27%) to flatband (or weak p-type band) for layers with In∼35%. The band gap bowing has been determined to be 1.4±0.2 and 2.1±0.3 eV for CER data with and without strain corrections, respectively. From this analysis it has been concluded that the reliable value of the bowing parameter for unstrained InGaN should be between 1.4 and 2.1 eV. Comparing CER with PL data it has been found that the Stokes shift rises from 20 to 120 meV when the indium concentration increased from 14% to 36%. In addition, it has been observed that the intensity of PL from InGaN layer...

[1]  Z. R. Wasilewski,et al.  Blue-violet InGaN laser diodes grown on bulk GaN substrates by plasma-assisted molecular-beam epitaxy , 2005 .

[2]  David E. Aspnes,et al.  Third-derivative modulation spectroscopy with low-field electroreflectance , 1973 .

[3]  T. Mukai,et al.  Blue, Green, and Amber InGaN/GaN Light-Emitting Diodes on Semipolar {11-22} GaN Bulk Substrates , 2006 .

[4]  P. Perlin,et al.  60 mW continuous-wave operation of InGaN laser diodes made by plasma-assisted molecular-beam epitaxy , 2006 .

[5]  S. Nakamura III-V nitride-based light-emitting diodes , 1996 .

[6]  Michael Kneissl,et al.  The critical thickness of InGaN on (0 0 0 1)GaN , 2008 .

[7]  Chun-Yen Chang,et al.  Contactless electroreflectance and photoreflectance studies of n- and p-type-doped GaN with Ga and N face , 2005 .

[8]  F. Pollak Contactless electromodulation investigations of surface/interface electric fields in semiconductor microstructures , 1993 .

[9]  Shun Lien Chuang,et al.  k.p method for strained wurtzite semiconductors , 1996 .

[10]  M. Syperek,et al.  Contactless electromodulation spectroscopy of AlGaN∕GaN heterostructures with a two-dimensional electron gas: A comparison of photoreflectance and contactless electroreflectance , 2006 .

[11]  S. S. Park,et al.  Contactless electroreflectance, in the range of 20 K , 2003 .

[12]  Kazumi Wada,et al.  Evidence of localization effects in InGaN single-quantum-well ultraviolet light-emitting diodes , 2000 .

[13]  J. Misiewicz,et al.  Contactless electroreflectance of GaN bulk crystals grown by ammonothermal method and GaN epilayers grown on these crystals , 2008 .

[14]  C. Caetano,et al.  Phase stability, chemical bonds, and gap bowing ofInxGa1−xNalloys: Comparison between cubic and wurtzite structures , 2006 .

[15]  R. Kudrawiec,et al.  Contactless electroreflectance study of band bending for undoped, Si- and Mg-doped GaN layers and AlGaN/GaN transistor heterostructures , 2009, Microelectron. J..

[16]  C. Walle,et al.  First-principles calculations for defects and impurities: Applications to III-nitrides , 2004 .

[17]  Yen-Kuang Kuo,et al.  First-principles calculation for bowing parameter of wurtzite InxGa1 − xN , 2005 .

[18]  Alex Zunger,et al.  Resonant hole localization and anomalous optical bowing in InGaN alloys , 1999 .

[19]  Z. Feng,et al.  Determination of the carrier-type at III-nitride semiconductor surfaces/interfaces using contactless electroreflectance , 1998 .

[20]  Masahito Kurouchi,et al.  Growth and properties of In‐rich InGaN films grown on (0001) sapphire by RF‐MBE , 2004 .

[21]  J. Reverchon,et al.  Photoconductance measurements on thin InGaN layers , 2000 .

[22]  Mi-Yang Kim,et al.  Characteristics of long wavelength InGaN quantum well laser diodes , 2008 .

[23]  E. Haller,et al.  Fermi-level stabilization energy in group III nitrides , 2005 .

[24]  G. E. Pikus,et al.  Symmetry and strain-induced effects in semiconductors , 1974 .

[25]  P. H. Jefferson,et al.  Transition from electron accumulation to depletion at InGaN surfaces , 2006 .

[26]  S. Denbaars,et al.  Stimulated Emission at Blue-Green (480 nm) and Green (514 nm) Wavelengths from Nonpolar (m-plane) and Semipolar (1122) InGaN Multiple Quantum Well Laser Diode Structures , 2008 .

[27]  Pierre Ruterana,et al.  First-principles investigation of lattice constants and bowing parameters in wurtzite AlxGa1−xN, InxGa1−xN and InxAl1−xN alloys , 2003 .

[28]  Isamu Akasaki,et al.  Optical band gap in Ga1−xInxN (0 , 1998 .

[29]  P. Larsen,et al.  Screening effect in contactless electroreflectance spectroscopy observed for AlGaN/GaN heterostructures with two dimensional electron gas , 2007 .

[30]  O. Ambacher,et al.  Characterization of InGaN thin films using high-resolution x-ray diffraction , 2000 .

[31]  Wladek Walukiewicz,et al.  Optical properties and electronic structure of InN and In-rich group III-nitride alloys , 2004 .

[32]  L. Romano,et al.  Large and composition-dependent band gap bowing in InxGa1-xN alloys , 1999 .

[33]  S. Chichibu,et al.  Band-gap separation in InGaN epilayers grown by metalorganic chemical vapor deposition , 1998 .

[34]  J. Misiewicz,et al.  Energy difference between electron subbands in AlInN∕GaInN quantum wells studied by contactless electroreflectance spectroscopy , 2006 .

[35]  Z. Feng,et al.  Optical transitions in InxGa1−xN alloys grown by metalorganic chemical vapor deposition , 1996 .

[36]  J. Misiewicz,et al.  Investigations of GaN surface quantum well in AlGaN/GaN transistor heterostructures by contactless electroreflectance spectroscopy , 2006 .

[37]  Zhe Chuan Feng,et al.  Optical properties of InxGa1−xN alloys grown by metalorganic chemical vapor deposition , 1998 .

[38]  Jerry R. Meyer,et al.  Band parameters for nitrogen-containing semiconductors , 2003 .

[39]  Oliver Ambacher,et al.  Growth and applications of Group III-nitrides , 1998 .

[40]  J. Misiewicz,et al.  On the deepness of contactless electroreflectance probing in semiconductor structures , 2007 .

[41]  Z. R. Wasilewski,et al.  Growth of InGaN and InGaN/InGaN Quantum Wells by Plasma Assisted Molecular Beam Epitaxy. , 2008 .

[42]  A. Yoshikawa,et al.  Bowing of the band gap pressure coefficient in InxGa1−xN alloys , 2008 .

[43]  Grigory Simin,et al.  Indium-incorporation-induced transformation of optical, photoluminescence and lasing properties of InGaN epilayers , 2003 .

[44]  J. Massies,et al.  Real time control of InxGa1-xN molecular beam epitaxy growth , 1998 .

[45]  C. Tu,et al.  Nature of band bending at semiconductor surfaces by contactless electroreflectance , 1992 .

[46]  K. H. Ploog,et al.  Strong localization in InGaN layers with high In content grown by molecular-beam epitaxy , 2002 .