Complexity of Higher-Degree Orthogonal Graph Embedding in the Kandinsky Model

We show that finding orthogonal grid embeddings of plane graphs (planar with fixed combinatorial embedding) with the minimum number of bends in the so-called Kandinsky model (allowing vertices of degree > 4) is NP-complete, thus solving a long-standing open problem. On the positive side, we give an efficient algorithm for several restricted variants, such as graphs of bounded branch width and a subexponential exact algorithm for general plane graphs.

[1]  Ignaz Rutter,et al.  Optimal Orthogonal Graph Drawing with Convex Bend Costs , 2012, ACM Trans. Algorithms.

[2]  Mark de Berg,et al.  Optimal Binary Space Partitions for Segments in the Plane , 2012, Int. J. Comput. Geom. Appl..

[3]  Petra Mutzel,et al.  Quasi-orthogonal drawing of planar graphs , 1998 .

[4]  Robin Thomas,et al.  Call routing and the ratcatcher , 1994, Comb..

[5]  Carlo Batini,et al.  Automatic graph drawing and readability of diagrams , 1988, IEEE Trans. Syst. Man Cybern..

[6]  Charles E. Leiserson,et al.  Area-Efficient Graph Layouts (for VLSI) , 1980, FOCS.

[7]  Charles E. Leiserson,et al.  Area-efficient graph layouts , 1980, 21st Annual Symposium on Foundations of Computer Science (sfcs 1980).

[8]  Fedor V. Fomin,et al.  Efficient Exact Algorithms on Planar Graphs: Exploiting Sphere Cut Decompositions , 2010, Algorithmica.

[9]  Michael Jünger,et al.  Automatic Layout of UML Class Diagrams in Orthogonal Style , 2004, Inf. Vis..

[10]  Roberto Tamassia,et al.  On Embedding a Graph in the Grid with the Minimum Number of Bends , 1987, SIAM J. Comput..

[11]  Dimitrios M. Thilikos,et al.  New upper bounds on the decomposability of planar graphs , 2006, J. Graph Theory.

[12]  Andreas Karrenbauer,et al.  Journal of Graph Algorithms and Applications Accelerated Bend Minimization , 2022 .

[13]  Roberto Tamassia,et al.  On the Computational Complexity of Upward and Rectilinear Planarity Testing , 1994, SIAM J. Comput..

[14]  Markus Eiglsperger,et al.  Caesar Automatic Layout of UML Class Diagrams , 2001, GD.

[15]  Ignaz Rutter,et al.  Orthogonal Graph Drawing with Flexibility Constraints , 2010, Algorithmica.

[16]  Michael Kaufmann,et al.  Drawing High Degree Graphs with Low Bend Numbers , 1995, GD.

[17]  Ignaz Rutter,et al.  Orthogonal graph drawing with inflexible edges , 2016, Comput. Geom..

[18]  J. Davenport Editor , 1960 .

[19]  Hisao Tamaki,et al.  Optimal branch-decomposition of planar graphs in O(n3) Time , 2005, TALG.

[20]  Roberto Tamassia,et al.  Handbook on Graph Drawing and Visualization , 2013 .

[21]  Walter Didimo,et al.  Computing Orthogonal Drawings with the Minimum Number of Bends , 1997, IEEE Trans. Computers.

[22]  Goos Kant,et al.  A Better Heuristic for Orthogonal Graph Drawings , 1994, ESA.

[23]  Leslie G. Valiant,et al.  Universality considerations in VLSI circuits , 1981, IEEE Transactions on Computers.

[24]  Goos Kant,et al.  2-Visibility Drawings of Planar Graphs , 1996, GD.