Optimal Synthesis of Directivity Constrained Pencil Beams by Means of Circularly Symmetric Aperture Fields
暂无分享,去创建一个
[1] D. Slepian. Prolate spheroidal wave functions, Fourier analysis and uncertainty — IV: Extensions to many dimensions; generalized prolate spheroidal functions , 1964 .
[2] Tommaso Isernia,et al. DIRECT RADIATING ARRAYS FOR SATELLITE COMMUNICATIONS VIA APERIODIC TILINGS , 2009 .
[3] Robert S. Elliott,et al. On discretizing continuous aperture distributions , 1977 .
[4] T. Taylor,et al. Design of circular apertures for narrow beamwidth and low sidelobes , 1960 .
[5] R. Hansen,et al. A one-parameter circular aperture distribution with narrow beamwidth and low sidelobes , 1976 .
[6] Stephen P. Boyd,et al. Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.
[7] Yahya Rahmat-Samii,et al. On sampling continuous aperture distributions for discrete planar arrays , 1996 .
[8] T. Isernia,et al. Aperiodic arrays for space applications: An effective strategy for the overall design , 2009, 2009 3rd European Conference on Antennas and Propagation.
[9] M. Bertero. Linear Inverse and III-Posed Problems , 1989 .
[10] Tommaso Isernia,et al. A DETERMINISTIC APPROACH TO THE SYNTHESIS OF PENCIL BEAMS THROUGH PLANAR THINNED ARRAYS , 2010 .
[11] T. Milligan,et al. Space-tapered circular (ring) array , 2004, IEEE Antennas and Propagation Magazine.