Switchable pH-responsive polymeric membranes prepared via block copolymer micelle assembly.
暂无分享,去创建一个
Klaus-Viktor Peinemann | Ulla Vainio | Suzana P Nunes | R. Sougrat | S. Nunes | K. Peinemann | U. Vainio | Rachid Sougrat | Madhavan Karunakaran | Ali Reza Behzad | Bobby Hooghan | Neelakanda Pradeep | A. Behzad | M. Karunakaran | Neelakanda Pradeep | B. Hooghan
[1] Klaus-Viktor Peinemann,et al. Ultraporous Films with Uniform Nanochannels by Block Copolymer Micelles Assembly , 2010 .
[2] R. O’Reilly,et al. Using metallo-supramolecular block copolymers for the synthesis of higher order nanostructured assemblies. , 2010, Macromolecular rapid communications.
[3] Lijuan Zhang,et al. Dissipative Particle Dynamics Studies on Microstructure of pH-Sensitive Micelles for Sustained Drug Delivery , 2010 .
[4] Mathias Ulbricht,et al. Self‐Supporting, Double Stimuli‐Responsive Porous Membranes From Polystyrene‐block‐poly(N,N‐dimethylaminoethyl methacrylate) Diblock Copolymers , 2009 .
[5] B. Sumerlin,et al. Future perspectives and recent advances in stimuli-responsive materials , 2010 .
[6] W. Phillip,et al. Self-assembled block copolymer thin films as water filtration membranes. , 2010, ACS applied materials & interfaces.
[7] Reinhard Neumann,et al. Synthetic proton-gated ion channels via single solid-state nanochannels modified with responsive polymer brushes. , 2009, Nano letters.
[8] G. Fredrickson,et al. Block Copolymers—Designer Soft Materials , 1999 .
[9] S. Thayumanavan,et al. Molecular discrimination inside polymer nanotubules. , 2008, Nature nanotechnology.
[10] W. O. Saxton,et al. Three-dimensional reconstruction of imperfect two-dimensional crystals. , 1984, Ultramicroscopy.
[11] L. Rogers,et al. Infrared Spectral Study of Metal-Pyridine, -Substituted Pyridine, and -Quinoline Complexes in the 667-150 Cm-1 Region , 1966 .
[12] O. Ikkala,et al. Functional Materials Based on Self-Assembly of Polymeric Supramolecules , 2002, Science.
[13] K. Guarini,et al. Ultrahigh-density nanowire arrays grown in self-assembled diblock copolymer templates. , 2000, Science.
[14] P. Wong,et al. STUDIES OF METAL COMPLEXES OF PYRIDINE DERIVATIVES: THE EFFECTS OF COORDINATION UPON INFRARED INTENSITY OF THE FUNCTIONAL GROUP IN β-CYANOPYRIDINE , 1966 .
[15] S. R. Wickramasinghe,et al. Stimuli-responsive membranes , 2010 .
[16] Jae‐Suk Lee,et al. Polymerization of monomers containing functional silyl groups. 7. Porous membranes with controlled microstructures , 1989 .
[17] L. Belfiore,et al. Macromolecule–metal complexes: ligand field stabilization and thermophysical property modification , 2001 .
[18] M. C. Stuart,et al. Emerging applications of stimuli-responsive polymer materials. , 2010, Nature materials.
[19] Jae‐Suk Lee,et al. Polymerization of monomers containing functional silyl groups. 5. Synthesis of new porous membranes with functional groups , 1988 .
[20] Joachim P. Spatz,et al. Ion-Stabilized Block Copolymer Micelles: Film Formation and Intermicellar Interaction , 1996 .
[21] M. Hillmyer,et al. Nanoporous membranes derived from block copolymers: from drug delivery to water filtration. , 2010, ACS nano.
[22] Ryan C. Hayward,et al. Tailored Assemblies of Block Copolymers in Solution: It Is All about the Process , 2010 .
[23] Jin Kon Kim,et al. Single-file diffusion of protein drugs through cylindrical nanochannels. , 2010, ACS nano.
[24] L. Belfiore,et al. Reactive blending via metal-ligand coordination , 1995 .
[25] S. Minko,et al. Multiresponsive Biopolyelectrolyte Membrane , 2008 .