An Overview of Methods to Identify and Manage Uncertainty for Modelling Problems in the Water–Environment–Agriculture Cross-Sector

Uncertainty pervades the representation of systems in the water–environment–agriculture cross-sector. Successful methods to address uncertainties have largely focused on standard mathematical formulations of biophysical processes in a single sector, such as partial or ordinary differential equations. More attention to integrated models of such systems is warranted. Model components representing the different sectors of an integrated model can have less standard, and different, formulations to one another, as well as different levels of epistemic knowledge and data informativeness. Thus, uncertainty is not only pervasive but also crosses boundaries and propagates between system components. Uncertainty assessment (UA) cries out for more eclectic treatment in these circumstances, some of it being more qualitative and empirical. Here, we discuss the various sources of uncertainty in such a cross-sectoral setting and ways to assess and manage them. We have outlined a fast-growing set of methodologies, particularly in the computational mathematics literature on uncertainty quantification (UQ), that seem highly pertinent for uncertainty assessment. There appears to be considerable scope for advancing UA by integrating relevant UQ techniques into cross-sectoral problem applications. Of course this will entail considerable collaboration between domain specialists who often take first ownership of the problem and computational methods experts.

[1]  Bruno Sudret,et al.  Global sensitivity analysis using polynomial chaos expansions , 2008, Reliab. Eng. Syst. Saf..

[2]  Michael S. Eldred,et al.  Sparse Pseudospectral Approximation Method , 2011, 1109.2936.

[3]  Jing Li,et al.  An efficient surrogate-based method for computing rare failure probability , 2011, J. Comput. Phys..

[4]  D. W. Scott,et al.  Variable Kernel Density Estimation , 1992 .

[5]  R. Ghanem,et al.  Stochastic Finite Elements: A Spectral Approach , 1990 .

[6]  Joseph H. A. Guillaume,et al.  Robust discrimination between uncertain management alternatives by iterative reflection on crossover point scenarios: Principles, design and implementations , 2016, Environ. Model. Softw..

[7]  Stephen Roberts,et al.  Local and Dimension Adaptive Stochastic Collocation for Uncertainty Quantification , 2012 .

[8]  Dongbin Xiu,et al.  Numerical approach for quantification of epistemic uncertainty , 2010, J. Comput. Phys..

[9]  Ilya M. Sobol,et al.  INTEGRATION WITH QUASIRANDOM SEQUENCES: NUMERICAL EXPERIENCE , 1995 .

[10]  J. Halton On the efficiency of certain quasi-random sequences of points in evaluating multi-dimensional integrals , 1960 .

[11]  Rolf Hut,et al.  Comment on “Most computational hydrology is not reproducible, so is it really science?” by Christopher Hutton et al.: Let hydrologists learn the latest computer science by working with Research Software Engineers (RSEs) and not reinvent the waterwheel ourselves , 2017 .

[12]  Keith Beven,et al.  The future of distributed models: model calibration and uncertainty prediction. , 1992 .

[13]  K. Shuler,et al.  Nonlinear sensitivity analysis of multiparameter model systems , 1977 .

[14]  Benjamin Peherstorfer,et al.  Optimal Model Management for Multifidelity Monte Carlo Estimation , 2016, SIAM J. Sci. Comput..

[15]  Luis Tenorio,et al.  Numerical methods for A-optimal designs with a sparsity constraint for ill-posed inverse problems , 2012, Comput. Optim. Appl..

[16]  David G. Groves,et al.  A General, Analytic Method for Generating Robust Strategies and Narrative Scenarios , 2006, Manag. Sci..

[17]  G. Hornberger,et al.  Approach to the preliminary analysis of environmental systems , 1981 .

[18]  David G. Tarboton,et al.  Disaggregation procedures for stochastic hydrology based on nonparametric density estimation , 1998 .

[19]  R. Tapia,et al.  Nonparametric Function Estimation, Modeling, and Simulation , 1987 .

[20]  Karen Willcox,et al.  A decomposition‐based approach to uncertainty analysis of feed‐forward multicomponent systems , 2014 .

[21]  Michael B. Giles,et al.  Multilevel Monte Carlo methods , 2013, Acta Numerica.

[22]  Olivier Barreteau,et al.  Integrated Groundwater Management: Concepts, Approaches and Challenges , 2016 .

[23]  Hans Bock,et al.  Parameter Estimation and Optimum Experimental Design for Differential Equation Models , 2013 .

[24]  A. Saltelli,et al.  An alternative way to compute Fourier amplitude sensitivity test (FAST) , 1998 .

[25]  Dongbin Xiu,et al.  A Stochastic Collocation Algorithm with Multifidelity Models , 2014, SIAM J. Sci. Comput..

[26]  M. C. Jones,et al.  A Brief Survey of Bandwidth Selection for Density Estimation , 1996 .

[27]  Marco A. Janssen,et al.  The Practice of Archiving Model Code of Agent-Based Models , 2017, J. Artif. Soc. Soc. Simul..

[28]  Stephen Roberts,et al.  Finite element thin plate splines in density estimation , 2009 .

[29]  Alex A. Gorodetsky,et al.  Mercer kernels and integrated variance experimental design: connections between Gaussian process regression and polynomial approximation , 2015, SIAM/ASA J. Uncertain. Quantification.

[30]  D. Balding,et al.  Approximate Bayesian computation in population genetics. , 2002, Genetics.

[31]  Thomas Gerstner,et al.  Dimension–Adaptive Tensor–Product Quadrature , 2003, Computing.

[32]  Joseph H. A. Guillaume,et al.  Methods for exploring uncertainty in groundwater management predictions , 2016 .

[33]  Paul G. Constantine,et al.  Active subspaces for sensitivity analysis and dimension reduction of an integrated hydrologic model , 2015, Comput. Geosci..

[34]  M. C. Jones,et al.  On optimal data-based bandwidth selection in kernel density estimation , 1991 .

[35]  Robert J Lempert,et al.  A new decision sciences for complex systems , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[36]  Peter A. Vanrolleghem,et al.  Uncertainty in the environmental modelling process - A framework and guidance , 2007, Environ. Model. Softw..

[37]  Fabio Nobile,et al.  A Sparse Grid Stochastic Collocation Method for Partial Differential Equations with Random Input Data , 2008, SIAM J. Numer. Anal..

[38]  J. D. Jakeman,et al.  A Consistent Bayesian Formulation for Stochastic Inverse Problems Based on Push-forward Measures , 2017, 1704.00680.

[39]  Karen Willcox,et al.  A Domain Decomposition Approach for Uncertainty Analysis , 2015, SIAM J. Sci. Comput..

[40]  Benjamin Peherstorfer,et al.  Spatially adaptive sparse grids for high-dimensional data-driven problems , 2010, J. Complex..

[41]  S. Funtowicz,et al.  Combining Quantitative and Qualitative Measures of Uncertainty in Model‐Based Environmental Assessment: The NUSAP System , 2005, Risk analysis : an official publication of the Society for Risk Analysis.

[42]  Max D. Morris,et al.  Factorial sampling plans for preliminary computational experiments , 1991 .

[43]  J. Rosenthal,et al.  Optimal scaling for various Metropolis-Hastings algorithms , 2001 .

[44]  W. Gautschi A Survey of Gauss-Christoffel Quadrature Formulae , 1981 .

[45]  Johannes O. Royset,et al.  Fusion of hard and soft information in nonparametric density estimation , 2015, Eur. J. Oper. Res..

[46]  R. E. Wengert,et al.  A simple automatic derivative evaluation program , 1964, Commun. ACM.

[47]  Scott D. Peckham,et al.  A component-based approach to integrated modeling in the geosciences: The design of CSDMS , 2013, Comput. Geosci..

[48]  D. W. Scott,et al.  Multivariate Density Estimation, Theory, Practice and Visualization , 1992 .

[49]  Dongbin Xiu,et al.  The Wiener-Askey Polynomial Chaos for Stochastic Differential Equations , 2002, SIAM J. Sci. Comput..

[50]  Manuel Menezes de Oliveira Neto,et al.  Overview and State-of-the-Art of Uncertainty Visualization , 2014, Scientific Visualization.

[51]  Jonathan C. Mattingly,et al.  Diffusion limits of the random walk metropolis algorithm in high dimensions , 2010, 1003.4306.

[52]  Dongbin Xiu,et al.  Local Polynomial Chaos Expansion for Linear Differential Equations with High Dimensional Random Inputs , 2015, SIAM J. Sci. Comput..

[53]  E. Haber,et al.  Optimal Experimental Design for the Large‐Scale Nonlinear Ill‐Posed Problem of Impedance Imaging , 2010 .

[54]  Joseph H. A. Guillaume,et al.  Characterising performance of environmental models , 2013, Environ. Model. Softw..

[55]  Gianluca Geraci,et al.  A multifidelity multilevel Monte Carlo method for uncertainty propagation in aerospace applications , 2017 .

[56]  Paul G. Constantine,et al.  Reprint of: Active subspaces for sensitivity analysis and dimension reduction of an integrated hydrologic model , 2016, Comput. Geosci..

[57]  Rolf Hut,et al.  Let hydrologists learn the latest computer science by working with Research Software Engineers (RSEs) and not reinvent the waterwheel ourselves. A comment to “Most Computational Hydrology is not Reproducible, so is it Really Science?” , 2017 .

[58]  Sankaran Mahadevan,et al.  Likelihood-Based Approach to Multidisciplinary Analysis Under Uncertainty , 2012 .

[59]  Roger Ghanem,et al.  Dimension reduction in stochastic modeling of coupled problems , 2011, 1112.4761.

[60]  Hans-Joachim Bungartz,et al.  Acta Numerica 2004: Sparse grids , 2004 .

[61]  Sylvia Richardson,et al.  Markov Chain Monte Carlo in Practice , 1997 .

[62]  Tao Zhou,et al.  A Christoffel function weighted least squares algorithm for collocation approximations , 2014, Math. Comput..

[63]  Albert Cohen,et al.  Discrete least squares polynomial approximation with random evaluations − application to parametric and stochastic elliptic PDEs , 2015 .

[64]  A. Kiureghian,et al.  Second-Order Reliability Approximations , 1987 .

[65]  K. Chaloner,et al.  Bayesian Experimental Design: A Review , 1995 .

[66]  D. Xiu Numerical integration formulas of degree two , 2008 .

[67]  Olaf David,et al.  A software engineering perspective on environmental modeling framework design: The Object Modeling System , 2013, Environ. Model. Softw..

[68]  Anthony J. Jakeman,et al.  Selecting among five common modelling approaches for integrated environmental assessment and management , 2013, Environ. Model. Softw..

[69]  Roger Ghanem,et al.  Measure transformation and efficient quadrature in reduced‐dimensional stochastic modeling of coupled problems , 2011, 1112.4772.

[70]  Paul G. Constantine,et al.  Active Subspaces - Emerging Ideas for Dimension Reduction in Parameter Studies , 2015, SIAM spotlights.

[71]  Hans Bock,et al.  Numerical methods for optimum experimental design in DAE systems , 2000 .

[72]  A. P. Dawid,et al.  Gaussian Processes to Speed up Hybrid Monte Carlo for Expensive Bayesian Integrals , 2003 .

[73]  Paul G. Constantine,et al.  Efficient uncertainty propagation for network multiphysics systems , 2013, 1308.6520.

[74]  R. Rackwitz,et al.  First-order concepts in system reliability , 1982 .

[75]  John D. Jakeman,et al.  Enhancing adaptive sparse grid approximations and improving refinement strategies using adjoint-based a posteriori error estimates , 2014, J. Comput. Phys..

[76]  Leo Wai-Tsun Ng,et al.  Multifidelity Uncertainty Quantification Using Non-Intrusive Polynomial Chaos and Stochastic Collocation , 2012 .

[77]  Nong Shang,et al.  Parameter uncertainty and interaction in complex environmental models , 1994 .

[78]  Alireza Doostan,et al.  Compressive sampling of polynomial chaos expansions: Convergence analysis and sampling strategies , 2014, J. Comput. Phys..

[79]  J. B. Gregersen,et al.  OpenMI: Open modelling interface , 2007 .

[80]  Anthony J. Jakeman,et al.  Ten iterative steps in development and evaluation of environmental models , 2006, Environ. Model. Softw..

[81]  Jan H. Kwakkel,et al.  Exploratory Modeling and Analysis, an approach for model-based foresight under deep uncertainty , 2013 .

[82]  Andrew M. Stuart,et al.  Inverse problems: A Bayesian perspective , 2010, Acta Numerica.

[83]  Tiangang Cui,et al.  Likelihood-informed dimension reduction for nonlinear inverse problems , 2014, 1403.4680.

[84]  James Martin,et al.  A Computational Framework for Infinite-Dimensional Bayesian Inverse Problems Part I: The Linearized Case, with Application to Global Seismic Inversion , 2013, SIAM J. Sci. Comput..

[85]  Dongbin Xiu,et al.  High-Order Collocation Methods for Differential Equations with Random Inputs , 2005, SIAM J. Sci. Comput..

[86]  Larry A. Wasserman,et al.  Sparse Nonparametric Density Estimation in High Dimensions Using the Rodeo , 2007, AISTATS.

[87]  Karen Willcox,et al.  Optimal $$L_2$$L2-norm empirical importance weights for the change of probability measure , 2017, Stat. Comput..

[88]  Anthony J. Jakeman,et al.  Integrated assessment and modelling: features, principles and examples for catchment management , 2003, Environ. Model. Softw..

[89]  Christopher Hutton,et al.  Most computational hydrology is not reproducible, so is it really science? , 2016, Water Resources Research.

[90]  W. Näther Optimum experimental designs , 1994 .

[91]  James A. Bucklew,et al.  Introduction to Rare Event Simulation , 2010 .

[92]  Thomas Gerstner,et al.  Numerical integration using sparse grids , 2004, Numerical Algorithms.

[93]  Houman Owhadi,et al.  A non-adapted sparse approximation of PDEs with stochastic inputs , 2010, J. Comput. Phys..

[94]  Ilya M. Sobol,et al.  Sensitivity Estimates for Nonlinear Mathematical Models , 1993 .