A mesh independent superlinear algorithm for some nonlinear nonsymmetric elliptic systems

The numerical solution of nonlinear elliptic transport systems is considered. An outer-inner (damped inexact Newton plus PCG type) iteration is proposed for the finite element discretization of the problem, and mesh independent superlinear convergence is proved for both the outer and inner iterations. Numerical experiments are enclosed.

[1]  István Faragó,et al.  Variable Preconditioning via Quasi-Newton Methods for Nonlinear Problems in Hilbert Space , 2003, SIAM J. Numer. Anal..

[2]  R. Courant,et al.  Methods of Mathematical Physics , 1962 .

[3]  István Faragó,et al.  Numerical solution of nonlinear elliptic problems via preconditioning operators : theory and applications , 2002 .

[4]  Pekka Neittaanmäki,et al.  Mathematical and Numerical Modelling in Electrical Engineering Theory and Applications , 1996 .

[5]  Thomas A. Manteuffel,et al.  On the theory of equivalent operators and application to the numerical solution of uniformly elliptic partial differential equations , 1990 .

[6]  Owe Axelsson,et al.  Superlinearly convergent CG methods via equivalent preconditioning for nonsymmetric elliptic operators , 2004, Numerische Mathematik.

[7]  Richard Courant,et al.  Methods of Mathematical Physics, 1 , 1955 .

[8]  Owe Axelsson,et al.  On global convergence of iterative methods , 1982 .

[9]  Karel Rektorys,et al.  The method of discretization in time and partial differential equations , 1982 .

[10]  Tuomo Rossi,et al.  A Parallel Fast Direct Solver for Block Tridiagonal Systems with Separable Matrices of Arbitrary Dimension , 1999, SIAM J. Sci. Comput..

[11]  Owe Axelsson A Survey of Algebraic Multilevel Iteration (AMLI) Methods , 2003 .

[12]  Roy Plastock,et al.  Homeomorphisms between Banach spaces , 1974 .

[13]  Owe Axelsson,et al.  Mesh Independent Superlinear PCG Rates Via Compact-Equivalent Operators , 2007, SIAM J. Numer. Anal..

[14]  Zahari Zlatev,et al.  Computer Treatment of Large Air Pollution Models , 1995 .

[15]  T. Manteuffel,et al.  Necessary and Sufficient Conditions for the Existence of a Conjugate Gradient Method , 1984 .

[16]  P. Swarztrauber THE METHODS OF CYCLIC REDUCTION, FOURIER ANALYSIS AND THE FACR ALGORITHM FOR THE DISCRETE SOLUTION OF POISSON'S EQUATION ON A RECTANGLE* , 1977 .

[17]  O. Nevanlinna Convergence of Iterations for Linear Equations , 1993 .