All-inorganic cesium lead iodide perovskite solar cells with stabilized efficiency beyond 15%

As the black cesium lead iodide (CsPbI3) tends to transit into a yellow δ-phase at ambient, it is imperative to develop a stabilized black phase for photovoltaic applications. Herein, we report a distorted black CsPbI3 film by exploiting the synergistic effect of hydroiodic acid (HI) and phenylethylammonium iodide (PEAI) additives. It is found that the HI induces formation of hydrogen lead iodide (HPbI3+x), an intermediate to the distorted black phase with appropriate band gap of 1.69 eV; while PEAI provides nucleation for optimized crystallization. More importantly, it stabilizes the distorted black phase by hindering phase transition via its steric effects. Upon optimization, we have attained solar cell efficiency as high as 15.07%. Specifically, the bare cell without any encapsulation shows negligible efficiency loss after 300 h of light soaking. The device keeps 92% of its initial cell efficiency after being stored for 2 months under ambient conditions.Black phase cesium lead iodide perovskite is regarded as a promising candidate for solar cells, but it easily transits to undesired yellow phase. Herein, Wang et al. stabilized the black phase using molecular additives to achieve device efficiency beyond 15% with high light soaking stability.

[1]  P. Kamat,et al.  Light-Induced Anion Phase Segregation in Mixed Halide Perovskites , 2018 .

[2]  Darien J. Morrow,et al.  Selective Stabilization and Photophysical Properties of Metastable Perovskite Polymorphs of CsPbI3 in Thin Films , 2017 .

[3]  Konrad Wojciechowski,et al.  Mapping Electric Field‐Induced Switchable Poling and Structural Degradation in Hybrid Lead Halide Perovskite Thin Films , 2015 .

[4]  Yongbo Yuan,et al.  Non-wetting surface-driven high-aspect-ratio crystalline grain growth for efficient hybrid perovskite solar cells , 2015, Nature Communications.

[5]  Wei Geng,et al.  Phenylalkylamine Passivation of Organolead Halide Perovskites Enabling High‐Efficiency and Air‐Stable Photovoltaic Cells , 2016, Advanced materials.

[6]  Ruifeng Zhang,et al.  Highly Air-Stable Carbon-Based α-CsPbI3 Perovskite Solar Cells with a Broadened Optical Spectrum , 2018, ACS Energy Letters.

[7]  G. Wang,et al.  µ‐Graphene Crosslinked CsPbI3 Quantum Dots for High Efficiency Solar Cells with Much Improved Stability , 2018 .

[8]  Yongfang Li,et al.  Polymer Doping for High‐Efficiency Perovskite Solar Cells with Improved Moisture Stability , 2018 .

[9]  Huicong Liu,et al.  Inorganic Perovskite Solar Cells: A Rapidly Growing Field , 2018 .

[10]  M. Shahiduzzaman,et al.  Annealing effects on CsPbI3-based planar heterojunction perovskite solar cells formed by vacuum deposition method , 2017 .

[11]  Jay B. Patel,et al.  Bandgap‐Tunable Cesium Lead Halide Perovskites with High Thermal Stability for Efficient Solar Cells , 2016 .

[12]  S. Priya,et al.  Improved Phase Stability of Formamidinium Lead Triiodide Perovskite by Strain Relaxation , 2016 .

[13]  D. Chung,et al.  Phase Stabilized α‐CsPbI3 Perovskite Nanocrystals for Photodiode Applications , 2018 .

[14]  M. Green,et al.  Hole Transport Layer Free Inorganic CsPbIBr2 Perovskite Solar Cell by Dual Source Thermal Evaporation , 2016 .

[15]  Daoben Zhu,et al.  Solution-processed transparent coordination polymer electrode for photovoltaic solar cells , 2017 .

[16]  Yongfang Li,et al.  Energy-Down-Shift CsPbCl3:Mn Quantum Dots for Boosting the Efficiency and Stability of Perovskite Solar Cells , 2017 .

[17]  Kang Wang,et al.  All-Ambient Processed Binary CsPbBr3-CsPb2Br5 Perovskites with Synergistic Enhancement for High-Efficiency Cs-Pb-Br-Based Solar Cells. , 2018, ACS applied materials & interfaces.

[18]  Wanjung Kim,et al.  Potassium Incorporation for Enhanced Performance and Stability of Fully Inorganic Cesium Lead Halide Perovskite Solar Cells. , 2017, Nano letters.

[19]  Michael Grätzel,et al.  Bication lead iodide 2D perovskite component to stabilize inorganic α-CsPbI3 perovskite phase for high-efficiency solar cells , 2017, Science Advances.

[20]  Qingmin Ji,et al.  Bismuth Incorporation Stabilized α-CsPbI3 for Fully Inorganic Perovskite Solar Cells , 2017 .

[21]  Q. Wang,et al.  Temperature-assisted crystallization for inorganic CsPbI2Br perovskite solar cells to attain high stabilized efficiency 14.81% , 2018, Nano Energy.

[22]  Q. Tang,et al.  High-Purity Inorganic Perovskite Films for Solar Cells with 9.72 % Efficiency. , 2018, Angewandte Chemie.

[23]  Bai‐Xue Chen,et al.  Dimension engineering on cesium lead iodide for efficient and stable perovskite solar cells , 2017 .

[24]  Alexander C. Forse,et al.  How Strong Is the Hydrogen Bond in Hybrid Perovskites? , 2017, The journal of physical chemistry letters.

[25]  Q. Wang,et al.  CsPbCl3‐Driven Low‐Trap‐Density Perovskite Grain Growth for >20% Solar Cell Efficiency , 2018, Advanced science.

[26]  Wei Chen,et al.  Perovskite solar cells with 18.21% efficiency and area over 1 cm2 fabricated by heterojunction engineering , 2016, Nature Energy.

[27]  G. Cao,et al.  Constructing water-resistant CH3NH3PbI3 perovskite films via coordination interaction , 2016 .

[28]  Wasim J. Mir,et al.  Can B-Site Doping or Alloying Improve Thermal- and Phase-Stability of All-Inorganic CsPbX3 (X = Cl, Br, I) Perovskites? , 2018 .

[29]  W. Yin,et al.  Intrinsic Point Defects in Inorganic Cesium Lead Iodide Perovskite CsPbI3 , 2018 .

[30]  Yixin Zhao,et al.  A Facile Low Temperature Fabrication of High Performance CsPbI2Br All‐Inorganic Perovskite Solar Cells , 2018 .

[31]  Fuzhi Huang,et al.  Phase Segregation Enhanced Ion Movement in Efficient Inorganic CsPbIBr2 Solar Cells , 2017 .

[32]  Q. Wang,et al.  Graphdiyne Quantum Dots for Much Improved Stability and Efficiency of Perovskite Solar Cells , 2018 .

[33]  Matthew C. Beard,et al.  Enhanced mobility CsPbI3 quantum dot arrays for record-efficiency, high-voltage photovoltaic cells , 2017, Science Advances.

[34]  Huibiao Liu,et al.  Graphdiyne:ZnO Nanocomposites for High‐Performance UV Photodetectors , 2016, Advanced materials.

[35]  Dong Yang,et al.  E-beam evaporated Nb2O5 as an effective electron transport layer for large flexible perovskite solar cells , 2017 .

[36]  C. F. V. Weizsäcker,et al.  Die Unendlichkeit der Welt(). Eine Studie über das Symbolische in der Naturwissenschaft , 1944 .

[37]  Lin Sun,et al.  Solvent Engineering for Ambient-Air-Processed, Phase-Stable CsPbI3 in Perovskite Solar Cells. , 2016, The journal of physical chemistry letters.

[38]  F. Giordano,et al.  Enhanced electronic properties in mesoporous TiO2 via lithium doping for high-efficiency perovskite solar cells , 2016, Nature Communications.

[39]  M. Kanatzidis,et al.  Anharmonicity and Disorder in the Black Phases of Cesium Lead Iodide Used for Stable Inorganic Perovskite Solar Cells. , 2018, ACS nano.

[40]  Q. Wang,et al.  Stable ultra-fast broad-bandwidth photodetectors based on α-CsPbI3 perovskite and NaYF4:Yb,Er quantum dots. , 2017, Nanoscale.

[41]  Jingjing Zhao,et al.  Stabilizing the α-Phase of CsPbI3 Perovskite by Sulfobetaine Zwitterions in One-Step Spin-Coating Films , 2017 .

[42]  E. Sargent,et al.  Graphdiyne: An Efficient Hole Transporter for Stable High‐Performance Colloidal Quantum Dot Solar Cells , 2016 .

[43]  Shuzi Hayase,et al.  Efficiency enhancement by changing perovskite crystal phase and adding a charge extraction interlayer in organic amine free-perovskite solar cells based on cesium , 2016 .

[44]  Donghwan Kim,et al.  Electric-Field-Induced Degradation of Methylammonium Lead Iodide Perovskite Solar Cells. , 2016, The journal of physical chemistry letters.

[45]  Mingzhen Liu,et al.  Tailored dimensionality to regulate the phase stability of inorganic cesium lead iodide perovskites. , 2018, Nanoscale.

[46]  Yanrong Wang,et al.  CsPb0.9Sn0.1IBr2 Based All-Inorganic Perovskite Solar Cells with Exceptional Efficiency and Stability. , 2017, Journal of the American Chemical Society.

[47]  Kang L. Wang,et al.  Interstitial Mn2+-Driven High-Aspect-Ratio Grain Growth for Low-Trap-Density Microcrystalline Films for Record Efficiency CsPbI2Br Solar Cells , 2018 .

[48]  H. Snaith,et al.  Vapour-Deposited Cesium Lead Iodide Perovskites: Microsecond Charge Carrier Lifetimes and Enhanced Photovoltaic Performance , 2017, ACS energy letters.

[49]  Y. Mai,et al.  All-Inorganic CsPbI2Br Perovskite Solar Cells with High Efficiency Exceeding 13. , 2018, Journal of the American Chemical Society.

[50]  N. Zhao,et al.  HPbI3: A New Precursor Compound for Highly Efficient Solution‐Processed Perovskite Solar Cells , 2015 .

[51]  Hui Bian,et al.  3D–2D–0D Interface Profiling for Record Efficiency All‐Inorganic CsPbBrI2 Perovskite Solar Cells with Superior Stability , 2018 .

[52]  Franco Cacialli,et al.  Inorganic caesium lead iodide perovskite solar cells , 2015 .

[53]  Bo Li,et al.  Surface passivation engineering strategy to fully-inorganic cubic CsPbI3 perovskites for high-performance solar cells , 2018, Nature Communications.

[54]  Z. Tian,et al.  In Situ Fabrication of Highly Luminescent Bifunctional Amino Acid Crosslinked 2D/3D NH3C4H9COO(CH3NH3PbBr3)n Perovskite Films , 2017 .

[55]  Q. Wang,et al.  Graded Bandgap CsPbI2+Br1− Perovskite Solar Cells with a Stabilized Efficiency of 14.4% , 2018, Joule.

[56]  Z. Yin,et al.  Enhanced electron extraction using SnO2 for high-efficiency planar-structure HC(NH2)2PbI3-based perovskite solar cells , 2016, Nature Energy.

[57]  M. Roeffaers,et al.  Selective Photocatalytic Oxidation of Benzylic Alcohols with Hybrid Organic − Inorganic Perovskite Materials , 2018 .

[58]  Yanfa Yan,et al.  Progress in Theoretical Study of Metal Halide Perovskite Solar Cell Materials , 2017 .

[59]  K. Stevenson,et al.  Highly Efficient All-Inorganic Planar Heterojunction Perovskite Solar Cells Produced by Thermal Coevaporation of CsI and PbI2. , 2017, The journal of physical chemistry letters.

[60]  F. Giustino,et al.  Cubic or Orthorhombic? Revealing the Crystal Structure of Metastable Black-Phase CsPbI3 by Theory and Experiment , 2018, ACS Energy Letters.

[61]  Hung‐Yu Lin,et al.  All‐Vacuum‐Deposited Stoichiometrically Balanced Inorganic Cesium Lead Halide Perovskite Solar Cells with Stabilized Efficiency Exceeding 11% , 2017, Advanced materials.

[62]  Ashley R. Marshall,et al.  Quantum dot–induced phase stabilization of α-CsPbI3 perovskite for high-efficiency photovoltaics , 2016, Science.

[63]  P. Ghosh,et al.  Origin of the Substitution Mechanism for the Binding of Organic Ligands on the Surface of CsPbBr3 Perovskite Nanocubes. , 2017, The journal of physical chemistry letters.

[64]  Jinsong Huang,et al.  Understanding the physical properties of hybrid perovskites for photovoltaic applications , 2017 .

[65]  Mercouri G Kanatzidis,et al.  Semiconducting tin and lead iodide perovskites with organic cations: phase transitions, high mobilities, and near-infrared photoluminescent properties. , 2013, Inorganic chemistry.